Activity

  • Mcguire Hein posted an update 1 week, 4 days ago

    7 ± 0.1 for both types of triads. This number is far too low for optical data storage using single triads and implications concerning the miniaturization of optical memories based on such systems will be discussed. Yet, together with the high fatigue resistance, this number is encouraging for applications in super-resolution optical microscopy on frozen biological samples.Block-localized wave function is a useful method for optimizing constrained determinants. In this article, we extend the generalized block-localized wave function technique to a relativistic two-component framework. Optimization of excited state determinants for two-component wave functions presents a unique challenge because the excited state manifold is often quite dense with degenerate states. Furthermore, we test the degree to which certain symmetries result naturally from the ΔSCF optimization such as time-reversal symmetry and symmetry with respect to the total angular momentum operator on a series of atomic systems. Variational optimizations may often break the symmetry in order to lower the overall energy, just as unrestricted Hartree-Fock breaks spin symmetry. Overall, we demonstrate that time-reversal symmetry is roughly maintained when using Hartree-Fock, but less so when using Kohn-Sham density functional theory. Additionally, maintaining total angular momentum symmetry appears to be system dependent and not guaranteed. Finally, we were able to trace the breaking of total angular momentum symmetry to the relaxation of core electrons.The cavitation flow of linear-polymer solutions around a cylinder is studied by performing a large-scale molecular dynamics simulation. The addition of polymer chains remarkably suppresses cavitation. The polymers are stretched into a linear shape near the cylinder and entrained in the vortex behind the cylinder. As the polymers stretch, the elongational viscosity increases, which suppresses the vortex formation. Furthermore, the polymers exhibit an entropic elasticity owing to stretching. This elastic energy increases the local temperature, which inhibits the cavitation inception. These effects of polymers result in the dramatic suppression of cavitation.We investigate the electronic structure of a planar mononuclear Cu-based molecule [Cu(C6H4S2)2]z in two oxidation states (z = -2, -1) using density-functional theory (DFT) with Fermi-Löwdin orbital (FLO) self-interaction correction (SIC). The dianionic Cu-based molecule was proposed to be a promising qubit candidate. Self-interaction error within approximate DFT functionals renders severe delocalization of electron and spin densities arising from 3d orbitals. The FLO-SIC method relies on optimization of Fermi-Löwdin orbital descriptors (FODs) with which localized occupied orbitals are constructed to create SIC potentials. Starting with many initial sets of FODs, we employ a frozen-density loop algorithm within the FLO-SIC method to study the Cu-based molecule. We find that the electronic structure of the molecule remains unchanged despite somewhat different final FOD configurations. In the dianionic state (spin S = 1/2), FLO-SIC spin density originates from the Cu d and S p orbitals with an approximate ratio of 21, in quantitative agreement with multireference calculations, while in the case of SIC-free DFT, the orbital ratio is reversed. Overall, FLO-SIC lowers the energies of the occupied orbitals and, in particular, the 3d orbitals unhybridized with the ligands significantly, which substantially increases the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) compared to SIC-free DFT results. The FLO-SIC HOMO-LUMO gap of the dianionic state is larger than that of the monoanionic state, which is consistent with experiment. Our results suggest a positive outlook of the FLO-SIC method in the description of magnetic exchange coupling within 3d-element-based systems.The source-sink potential (SSP) method provides a simple tool for the qualitative analysis of the conductance of molecular electronic devices, and often analytical expressions for the conductance can be obtained. Here, we extend the SSP approach to account for decoherent, inelastic electron transport by including the non-adiabatic coupling between the electrons and the nuclei in the molecule. This coupling results in contributions to electron transport that can modify the qualitative structure-conductance relationships that we unraveled previously with SSP. In the approach proposed, electron-nucleus interactions are treated starting from the harmonic approximation for the nuclei, using a non-perturbative approach to account for the non-adiabatic coupling. Our method qualitatively describes experimentally observed phenomena and allows for a simple analysis that often provides analytical formulas in terms of the physical parameters of the junction, e.g., vibrational energies, non-adiabatic coupling, and molecule-contact coupling.A machine learning (ML) methodology that uses a histogram of interaction energies has been applied to predict gas adsorption in metal-organic frameworks (MOFs) using results from atomistic grand canonical Monte Carlo (GCMC) simulations as training and test data. In this work, the method is first extended to binary mixtures of spherical species, in particular, Xe and Kr. In addition, it is shown that single-component adsorption of ethane and propane can be predicted in good agreement with GCMC simulation using a histogram of the adsorption energies felt by a methyl probe in conjunction with the random forest ML method. The results for propane can be improved by including a small number of MOF textural properties as descriptors. We also discuss the most significant features, which provides physical insight into the most beneficial adsorption energy sites for a given application.A method for the separation of a mixture of n-pentane and neopentane using a nano-crystallite of zeolite Y is reported. This method judiciously combines two well-known, counter-intuitive phenomena, the levitation and the blowtorch effects. The result is that the two components are separated by being driven to the opposite ends of the zeolite column. The calculations are based on the non-equilibrium Monte Carlo method with moves from a region at one temperature to a region at another temperature. The necessary acceptance probability for such moves has been derived here on the basis of stationary solution of an inhomogeneous Fokker-Planck equation. Simulations have been carried out with a realistic and experimentally relevant Gaussian hot zone and also a square hot zone, both of which lead to very good separation. Simulations without the hot zones do not show any separation. learn more The results are reported at a loading of 1 molecule per cage. The temperature of the hot zone is just ∼30 K higher than the ambient temperature.