-
Brady Overby posted an update 5 months ago
Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.Botulinum toxin type-A (BTX-A) injection for treating chronic migraine (CM) has developed into a new technique covering distinct injection points in the head and neck regions. The postulated analgesic mechanism implies that the injection should be administered to sensory nerves rather than to muscles. This study aimed to determine the topographical site of the auriculotemporal nerve (ATN) and to propose the effective injection points for treating CM. ATNs were investigated on 36 sides of 25 Korean cadavers. The anatomical structures of the ATN were investigated focusing on the temporal region. A right-angle ruler was positioned based on two clearly identifiable orthogonal reference lines based on the canthus and tragus as landmarks, and photographs were taken. The ATN appeared superficially in the anterosuperior region of the tragus. The nerve is located deeper than the superficial temporal artery. And it runs between the artery and the superficial temporal vein. In the superficial layer, it is divided into anterior and posterior divisions. The anterior division runs in a superior direction, while the posterior division runs in front of the ear and the several branches are distributed to the skin. We suggest that the optimal BTX-A injection points for CM are in the temporal region. The first point is about 2 cm anterior and 3 cm superior to two orthogonal reference lines defined based on the tragus and canthus, and the second point is about 4 cm superior to the first point. The third and fourth points are recommended about 2 cm superior to the first point, but respectively 1 cm anterior and posterior to it.NH3 emission has become one of the key factors for aerobic composting of animal manure. It has been reported that adding microbial agents during aerobic composting can reduce NH3 emissions. However, environmental factors have a considerable influence on the activity and stability of the microbial agent. Therefore, this study used cornstalk biochar as carriers to find out the better biological immobilization method to examine the mitigation ability and mechanism of NH3 production from laying hen manure composting. The results from different immobilized methods showed that NH3 was reduced by 12.43%, 5.53%, 14.57%, and 22.61% in the cornstalk biochar group, free load bacteria group, mixed load bacteria group, and separate load bacteria group, respectively. Under the simulated composting condition, NH3 production was 46.52, 38.14, 39.08, and 30.81 g in the treatment of the control, mixed bacteria, cornstalk biochar, and cornstalk biochar separate load immobilized mixed bacteria, respectively. The cornstalk biochar separate load immobilized mixed bacteria treatment significantly reduced NH3 emission compared with the other treatments (p less then 0.05). Compared with the control, adding cornstalk biochar immobilized mixed bacteria significantly decreased the electrical conductivity, water-soluble carbon, total nitrogen loss, and concentration of ammonium nitrogen (p less then 0.05), and significantly increased the seed germination rate, total number of microorganisms, and relative abundance of lactic acid bacteria throughout the composting process (p less then 0.05). Therefore, the reason for the low NH3 emission might be due not only to the adsorption of the cornstalk biochar but also because of the role of complex bacteria, which increases the relative abundance of lactic acid bacteria and promotes the acid production of lactic acid bacteria to reduce NH3 emissions. This result revealed the potential of using biological immobilization technology to reduce NH3 emissions during laying hen manure composting.The past three decades revolutionized the goose industry in the world. China holds the world’s largest goose breeds stock by 95% of the global total. GX15-070 molecular weight To optimize the goose industry and cope with ever increasing poultry meat and egg demands, there is a dire need to focus on reproduction, as most geese breeds exhibit poor reproductive performance. The present study was conducted with the aim to add a contribution in the goose industry and research by the histological visualizing step wise development of germ cells during spermatogenesis by microscopy and a histological technique. Yangzhou goose is a synthetic breed developed by using local goose germplasm resources of China. It is popular in the Chinese goose industry due to high productivity and adaptability. This research evaluated the steps of spermiogenesis and stages along with morphological changes in the seminiferous epithelium in Yangzhou goose ganders. For the assessment of various stages of the seminiferous epithelium cycle, testis sections were embedn and maturity. Our results suggest that Yangzhou ganders reach complete sexual maturity at 227 days of age.The graphene paper microsieves can be applied in the filtration of biological fluids or separation of solid particles from exploitation fluids. To produce graphene paper microsieves for specific applications, good control over fabrication should be achieved. In this study, a laser ablation method using a picosecond laser was applied to fabricate graphene paper microsieves. Holes in the microsieves were drilled using pulsed laser radiation with a pulse energy from 5 to 100 µJ, a duration of 60 ps, a wavelength of 355 nm, and a repetition rate of 1 kHz. The impact method was applied using 10 to 100 pulses to drill one hole. To produce holes of a proper diameter which could separate biological particles of a certain size (≥10 µm), optimum parameters of graphene paper laser ablation were defined using the MATLAB software taking into account laser pulse energy, repetition rate, and a desired hole diameter. A series of structural tests were carried out to determine the quality of an edge and a hole shape. Experimental results and Laguerre-Gauss calculations in MATLAB were then compared to perform the analysis of the distribution of diffraction fringes.