Activity

  • Healy Fournier posted an update 2 weeks, 1 day ago

    Composite nanoparticles composed of zein and chondroitin sulfate (CS) were self-assembled by the method of antisolvent precipitation to deliver curcumin (ZCCNPs). The structure of ZCCNPs changed from spheres to microaggregates with the increase of CS, involving hydrogen bonding and electrostatic and hydrophobic effects. The resistance of ZCCNPs to degeneration was improved by CS. The encapsulation efficiency of curcumin was enhanced by CS and showed the maximum (91.97%) when the mass ratio of zein-to-CS was 1 1 (ZCCNPs11). The crystallinity of curcumin changed to amorphous in ZCCNPs11. ZCCNPs11 exhibited great stability at pH 3.0-8.0, and it showed excellent thermostability at 35, 55, and 80 °C respectively for 120 min when the pH was 4.0 or 6.0. Meanwhile, it showed great storage stability at 4 and 22 °C respectively for 30 days. The retention rate of curcumin in ZCCNPs11 was higher than 65% within 8 days. The presence of CS improved the antiproliferative activity of curcumin-loaded zein nanoparticles (Cur-ZNPs) to HCT116 cells. ZCCNPs11 exhibited higher bioaccessibility (42.36%) than Cur-ZNPs. In addition, ZCCNPs11 exhibited excellent biocompatibility evaluated using in vitro cytotoxicity assay on NCM460 cells. The studies indicate that the delivery system fabricated in our work would be efficient for improving the application of hydrophobic nutrients in functional foods.Magnetite (Fe3O4), a representative relaxor multiferroic material, possesses fundamentally appealing multifaceted size-dependent properties. Herein, to evaluate a prototype spinel transition metal oxide (STMO), monodispersed and highly water-dispersible spherical magnetite nanoparticles (MNPs) with an enormous size range (3.7-242.8 nm) were synthesized via a facile microwave-assisted and polyol-mediated solvothermal approach at a controlled temperature and pressure using unique crystallite growth inhibitors. The excellent long-term colloidal stability of the MNPs in a polar environment and increase in their zeta potential confirmed the coordinative effect of the carboxylate groups derived from the covalent surface functionalization, which was also validated by FTIR spectroscopy, TGA and XPS analysis. The optical bandgap (Eg) between the crystal field split-off bands, which was calculated using the absorption spectra, increased gradually with a decrease in size of the MNPs within a broad UV-Vis range (1.59-4.92 eV). The red-shifting of the asymmetric Raman peaks with a smaller size and short-range electron-phonon coupling could be explained by the modified phonon confinement model (MPCM), whereas ferrimagnetic nature rejigged by superparamagnetism was verified from Mössbauer analysis. These stoichiometric, non-toxic, polar and magnetic nanocrystals are not only ideal for biomedical applications, but also suitable as electroactive porous host networks. Finally, the size-modulated MNPs were incorporated in poly(vinylidene fluoride) [PVDF]-based polytype nanogenerators as an electret filler to demonstrate their piezoelectric performance (VOC∼115.95 V and ISC∼1.04 μA), exhibiting substantial electromagnetic interference shielding.Nowadays, the spectroscopic databases used for the modeling of Earth and planetary atmospheres provide only electric-dipole transitions for polyatomic molecules (H2O, CO2, N2O, CH4, O3…). Very recently, electric-quadrupole transitions have been detected in the high sensitivity cavity ring down spectrum (CRDS) of water vapour near 1.3 μm [A. Campargue et al., Phys. ZLN005 nmr Rev. Res., 2020, 2, 023091, DOI 10.1103/PhysRevResearch.2.023091]. This discovery paved the way to systematic searches of quadrupole transitions in water vapor and other polyatomic molecules. In the present work, on the basis of high accuracy ab initio predictions, H216O quadrupole lines are detected for the first time in the 5.4 μm and 2.5 μm regions where they are predicted to have their largest intensities (up to 10-26 cm per molecule). A total of twelve quadrupole lines are identified in two high sensitivity Fourier transform spectra recorded with a 1064 m path length. Ten lines in the 4030-4150 cm-1 region are assigned to the ν3 band while the lines near 1820 and 1926 cm-1 belong to the ν2 band. The derived line intensities which are largely above the dipole intensity cut-off of the standard spectroscopic databases, agree nicely with the theoretical predictions. We thus conclude that the calculated line list of quadrupole transitions, validated by the present measurements, should be incorporated in the spectroscopic databases.Constructing eight-membered rings, especially in an enantioselective manner, is a challenging task due to unfavorable enthalpic and entropic barriers of the transition states during the formation process. Here we report an asymmetric [4+4] annulation reaction of diverse 1-azadienes and β-substituted cyclobutenones under the catalysis of modified cinchona alkaloids, by the in situ generation of ring-opened ammonium dienolate intermediates. A spectrum of heteroarene- or indene-fused eight-membered lactams are obtained in fair to excellent yields with remarkable enantioselectivities (up to 99% yield, 99% ee).Atherosclerosis is a chronic progressive disease, which may result in serious clinical outcomes, such as acute heart events or stroke with high mortality. At present, the clinical problems of atherosclerosis mainly consist of the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase and the shortage of valid treatments. Fortunately, with the development of nanotechnology, various inorganic nanoparticles with imaging enhancement and noninvasive therapy functions have been studied in the imaging and treatment of atherosclerosis, which has brought new hope to patients. This review focuses on the recent progress in the use of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis, including the key processes in the development of atherosclerosis and the mainly involved cells, inorganic nanoparticle-based dual-mode imaging methods classified by the types of targeting cells, and inorganic nanoparticle-based therapeutic approaches, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), drug delivery, gene therapy and imaging-guided therapy for atherosclerosis.