Activity

  • Hull Dohn posted an update 3 hours, 40 minutes ago

    To evaluate risk factors leading to non-alcoholic fatty liver disease (NAFLD) occurrence in polycystic ovarian syndrome (PCOS) women. A retrospective cohort study of a total of 586 women diagnosed with PCOS aged 13-35 years at the gynecology department at a university hospital was done to evaluate PCOS phenotype, metabolic syndrome (MetS) diagnosis, body composition, insulin sensitivity, sex hormones, lipid profile, liver function, and transient elastography (TE). GSK1904529A In PCOS women with NAFLD compared to those without, MetS diagnosis (Hazard ratio [HR] 5.6, 95% Confidence interval [CI] 2.2-14.4, p  25 kg/m2 (HR 2.2, 95% CI 0.6-8.0, p = 0.24) was not. Among NAFLD patients who underwent TE, a higher number of MetS components indicated a worse degree of fibrosis and steatosis. MetS diagnosis and HA at PCOS diagnosis were risk factors associated with NAFLD, while 2-h insulin level in 75 g GTT and obesity were not. Although elevated aspartate aminotransferase levels were significant for NAFLD risk, liver enzyme elevations may not be present until late liver damage. Further prospective studies of PCOS women with MetS or HA are warranted to determine whether patients without liver enzyme elevations should undergo preemptive liver examinations.This paper reports about the outcomes from an investigation carried out on tunable biosensor for detection using infrared in the range of 1.5 µm and 1.65 µm. The biosensor is made of phase change material formed by different alloy combinations, Ge2Sb2Te5 (GST). The nature of GST allows for the material to change phase with changes in temperature, giving the tunable sensing property for biosensing application. Sensor built with amorphous GST (aGST) and crystalline GST (cGST) in different design structures were tested on different concentrations of biomolecules hemoglobin (10 g/l, 20 g/l, 30 g/l and 40 g/l); and urine (0-1.5 mg/dL, 2.5 mg/dL, 5 mg/dL and 10 mg/dL). The tunable response observed from the tests demonstrates the potential application of the materials in the design of switching and sensing systems.Mycobacterium bovis is the causative agent of bovine tuberculosis (bTB) in wildlife. Confirmation of M. bovis infection relies on mycobacterial culture, which is time-consuming. Collection and transportation of infectious material also pose a human health risk. PrimeStore Molecular Transport Medium (MTM) has been shown to effectively inactivate infectious organisms, making it a safe method for handling infectious samples. This study investigated an in-field sampling technique for rapid, safe detection of M. bovis in buffalo tissues. Potentially infected tissues from bTB test-positive buffaloes were swabbed at post-mortem examination and stored in PrimeStore MTM at ambient temperature until Xpert MTB/RIF Ultra testing was performed. link2 Additionally, tissue samples were frozen and transported before homogenisation for culture and Ultra testing. Oral swabs were collected from M. bovis-unexposed buffaloes as a negative control cohort. Mycobacterium tuberculosis complex (MTBC) DNA was detected by Ultra in 13/16 tissue swabs and 9/16 matched tissue homogenates from culture-confirmed M. bovis-positive buffalo tissues. MTBC DNA was not detected in swabs from M. link3 bovis-unexposed animals, showing the potentially high specificity of Ultra with PrimeStore swabs. PrimeStore MTM sample processing, in combination with the Ultra assay, has the potential to provide a safe, rapid post-mortem screening test for M. bovis in buffaloes.The thermal expansion coefficient is an important thermal parameter that influences the performance of nanodevices based on two-dimensional materials. To obtain the thermal expansion coefficient of few-layer MoS2, suspended MoS2 and supported MoS2 were systematically investigated using Raman spectroscopy in the temperature range from 77 to 557 K. The temperature-dependent evolution of the Raman frequency shift for suspended MoS2 exhibited prominent differences from that for supported MoS2, obviously demonstrating the effect due to the thermal expansion coefficient mismatch between MoS2 and the substrate. The intrinsic thermal expansion coefficients of MoS2 with different numbers of layers were calculated. Interestingly, negative thermal expansion coefficients were obtained below 175 K, which was attributed to the bending vibrations in the MoS2 layer during cooling. Our results demonstrate that Raman spectroscopy is a feasible tool for investigating the thermal properties of few-layer MoS2 and will provide useful information for its further application in photoelectronic devices.Left ventricular (LV) global peak systolic longitudinal strain (GLS) is a sensitive measurement for detecting subtle LV systolic dysfunction and a powerful prognostic predictor. However, the clinical implication of LV GLS in lymphoma patients receiving cancer therapy remains unknown. We prospectively enrolled 74 lymphoma patients (57.9 ± 17.0 years old, 57% male). We performed echocardiographic studies after the 3rd and 6th cycles and 1 year after chemotherapy and a cardiopulmonary exercise test upon completion of 3 cycles of anticancer therapy. Cancer therapy-related cardiac dysfunction (CTRCD) was defined as a ≥ 15% relative reduction in GLS value from baseline. The primary outcome was a composite of all-cause mortality and heart failure events. Thirty-six patients (49%) had CTRCD (LV GLS baseline vs. after 3rd cycle of therapy 20.1 ± 2.6 vs. 17.5 ± 2.3%, p  less then  0.001). CTRCD was detected after the 3rd cycle of anticancer therapy. CTRCD patients had impaired exercise capacity (minute oxygen consumption/kg, CTRCD vs. CTRCD (-) 13.9 ± 3.1 vs. 17.0 ± 3.9 ml/kg/min, p = 0.02). More primary outcome events occurred in the CTRCD group (hazard ratio 3.21; 95% confidence interval 1.04-9.97; p = 0.03). LV GLS could detect subtle but clinically significant cardiac dysfunction in lymphoma patients in the early stage of anticancer therapy. CTRCD may be associated with not only a reduced exercise capacity but also a worse prognosis.Certain pathogenic genetic variants impact neurodevelopment and cause deviations from typical cognitive trajectories. Understanding variant-specific cognitive trajectories is clinically important for informed monitoring and identifying patients at risk for comorbid conditions. Here, we demonstrate a variant-specific normative chart for cognitive development for individuals with 22q11.2 deletion syndrome (22q11DS). We used IQ data from 1365 individuals with 22q11DS to construct variant-specific normative charts for cognitive development (Full Scale, Verbal, and Performance IQ). This allowed us to calculate Z-scores for each IQ datapoint. Then, we calculated the change between first and last available IQ assessments (delta Z-IQ-scores) for each individual with longitudinal IQ data (n = 708). We subsequently investigated whether using the variant-specific IQ-Z-scores would decrease required sample size to detect an effect with schizophrenia risk, as compared to standard IQ-scores. The mean Z-IQ-scores for FSIQ, VIQ, and PIQ were close to 0, indicating that participants had IQ-scores as predicted by the normative chart. The mean delta-Z-IQ-scores were equally close to 0, demonstrating a good fit of the normative chart and indicating that, as a group, individuals with 22q11DS show a decline in IQ-scores as they grow into adulthood. Using variant-specific IQ-Z-scores resulted in 30% decrease of required sample size, as compared to the standard IQ-based approach, to detect the association between IQ-decline and schizophrenia (p  less then  0.01). Our findings suggest that using variant-specific normative IQ data significantly reduces required sample size in a research context, and may facilitate a more clinically informative interpretation of IQ data. This approach allows identification of individuals that deviate from their expected, variant-specific, trajectory. This group may be at increased risk for comorbid conditions, such as schizophrenia in the case of 22q11DS.Affective disorders (AD, including bipolar disorder, BD, and major depressive disorder) are severe recurrent illnesses. Identifying neural markers of processes underlying AD development in at-risk youth can provide objective, “early-warning” signs that may predate onset or worsening of symptoms. Using data (n = 34) from the Bipolar Offspring Study, we examined relationships between neural response in regions supporting executive function, and those supporting self-monitoring, during an emotional n-back task (focusing on the 2-back face distractor versus the 0-back no-face control conditions) and future depressive and hypo/manic symptoms across two groups of youth at familial risk for AD Offspring of parents with BD (n = 15, age = 14.15) and offspring of parents with non-BD psychopathology (n = 19, age = 13.62). Participants were scanned and assessed twice, approximately 4 years apart. Across groups, less deactivation in the mid-cingulate cortex during emotional regulation (Rate Ratio = 3.07(95% CI1.09-8.66), χ2(1) = 4.48, p = 0.03) at Time-1, and increases in functional connectivity from Time-1 to 2 (Rate Ratio = 1.45(95% CI1.15-1.84), χ2(1) = 8.69, p = 0.003) between regions that showed deactivation during emotional regulation and the right caudate, predicted higher depression severity at Time-2. Both effects were robust to sensitivity analyses controlling for clinical characteristics. Decreases in deactivation between Times 1 and 2 in the right putamen tail were associated with increases in hypo/mania at Time-2, but this effect was not robust to sensitivity analyses. Our findings reflect neural mechanisms of risk for worsening affective symptoms, particularly depression, in youth across a range of familial risk for affective disorders. They may serve as potential objective, early-warning signs of AD in youth.The proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.