Activity

  • Pollock Crews posted an update 12 hours, 49 minutes ago

    Increasingly, novel treatment approaches are being investigated in early phase clinical studies. Importantly, such therapies need to be evaluated in the context of both refractory and relapsed disease; in older patients and those with co-morbid conditions; and those with neurocognitive dysfunction. A deeper understanding of the molecular genetic mechanisms underpinning rrPCNSL and its unique tumor microenvironment is urgently needed to inform biologically rational and effective therapies. rrPCNSL remains a clear unmet clinical need and a high priority area for clinical research that will require national and international collaborative studies with embedded translational science in order to improve outcomes for patients.Covid-19-related encephalitis is a heterogeneous syndrome characterized by a combination of clinical, laboratory, and imaging features related to inflammation of the brain, where the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presumably the causative agent. We reported a case of Covid-19-related encephalitis presenting with neuropsychiatric symptoms, including intense agitation. Reverse-transcriptase polymerase-chain-reaction in cerebrospinal fluid was positive for SARS-CoV-2. Our case expands the literature about neurologic manifestations of Covid-19 and emphasizes the possibility of prominent behavioral symptoms as the initial manifestation.

    Despite substantial research on early hominin lithic technologies, the learning mechanisms underlying flake manufacture and use are contested. To draw phylogenetic inferences on the potential cognitive processes underlying the acquisition of both of these abilities in early hominins, we investigated if and how one of our closest living relatives, chimpanzees (

    ), could learn to make and use flakes.

    Across several experimental conditions, we tested eleven task-naïve chimpanzees (unenculturated n=8, unknown status n=3) from two independent populations for their abilities to spontaneously make and subsequently use flakes as well as to use flakes made by a human experimenter.

    Despite the fact that the chimpanzees seemed to understand the requirements of the task, were sufficiently motivated and had ample opportunities to develop the target behaviours, none of the chimpanzees tested made or used flakes in any of the experimental conditions.

    These results differ from all previous ape flaking experiments, wested human-enculturated apes and provided test subjects with flake making and using demonstrations. RU58841 solubility dmso The contrast between these earlier positive findings and our negative findings (despite using a much larger sample size) suggests that enculturation and/or demonstrations may be necessary for chimpanzees to acquire these abilities. The data obtained in this study are consistent with the hypothesis that flake manufacture and use might have evolved in the hominin lineage after the split between Homo and Pan 7 million years ago, a scenario further supported by the initial lack of flaked stone tools in the archaeological record after this split. We discuss possible evolutionary scenarios for flake manufacture and use in both non-hominin and hominin lineages.Comorbid diabetes with depression is a challenging and often under-recognized clinical problem. During the current COVID-19 pandemic, a communicable disease is thriving on the increasing incidences of these non-communicable diseases. These three different health problems are bidirectionally connected forming a vicious cycle. Firstly, depressed individuals show a higher risk of developing diabetes and patients with diabetes have a higher risk of developing symptoms of depression. Secondly, patients with diabetes have a higher risk of developing severe COVID-19 as well as of experiencing breakthrough infections. Thirdly, in both patients with type 2 diabetes and in COVID-19 survivors the prevalence of depression seems to be increased. Fourthly, lockdown and quarantine measurements during the COVID-19 pandemic has led to an increase in depression. Therefore, it is of importance to increase the awareness of this interface between depression, diabetes and COVID-19. Finally, as symptoms of post-COVID, diabetes and depression may be overlapping, there is a need for educating skilled personnel in the management of these comorbidities.Recent experiments on melts of spherical nanoparticles (NPs) densely grafted with polymer chains show enhanced gas transport relative to the neat polymer (without NPs). As a means of understanding this unexpected behavior, we consider here the simpler case of two interacting planar brushes, under conditions representing a polymer melt far below its critical point (i.e., where the “free volume” or holes act akin to a poor solvent). Computer simulations illustrate, in agreement with mean-field ideas, that the density profile far away from the walls is flat but with a value that is marginally larger than the corresponding polymer melt under identical state conditions. We find that tracer particles, which represent the gas of interest, segregate preferentially to the grafting surface, with this result being relatively insensitive to the nature of polymer-surface interactions. These brush layers therefore correspond to heterogeneous transport media the gas molecules near the grafting surface have accelerated dynamics (presumably parallel to the wall) relative to the corresponding polymer melt, but they have slower dynamics in the central region of the brush. We therefore find that gas molecules perform hop-like motions – they spend a significant part of their time in the regions of fast transport, separated by motions where they “hop” from one surface to the other. These phenomena in combination lead to an overall speedup in gas dynamics in these brush layers relative to a polymer melt, in good agreement with the experimental data.

    Although early-life exposure to chronic disadvantage is associated with deleterious outcomes, 40-60% of exposed youth continue to thrive. To date, little is known about the etiology of these resilient outcomes.

    The current study examined child twin families living in disadvantaged contexts (N=417 pairs) to elucidate the etiology of resilience. We evaluated maternal reports of the Child Behavior Checklist to examine three domains of resilience and general resilience.

    Genetic, shared, and nonshared environmental influences significantly contributed to social resilience (22%, 61%, 17%, respectively) and psychiatric resilience (40%, 28%, 32%, respectively), but academic resilience was influenced only by genetic and nonshared environmental influences (65% and 35%, respectively). These three domains loaded significantly onto a latent resilience factor, with factor loadings ranging from .60 to .34. A common pathway model revealed that the variance common to all three forms of resilience was predominantly explained by genetic and non-shared environmental influences (50% and 35%, respectively).

    These results support recent conceptualizations of resilience as a multifaceted construct influenced by both genetic and environmental influences, only some of which overlap across the various domains of resilience.

    These results support recent conceptualizations of resilience as a multifaceted construct influenced by both genetic and environmental influences, only some of which overlap across the various domains of resilience.Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people and is caused by mutations in the transmembrane proteins polycystin-1 (Pkd1) and polycystin-2 (Pkd2). The mechanisms by which polycystin mutations induce cyst formation are not well understood, however pro-proliferative signaling must be involved for tubule epithelial cell number to increase over time. We recently found that the stress-activated mitogen-activated protein kinase (MAPK) pathway c-Jun N-terminal kinase (JNK) pathway is activated in cystic disease and genetically removing JNK reduces cyst growth driven by a loss of Pkd2. This review covers the current state of knowledge of signaling in ADPKD with an emphasis on the JNK pathway.Herein, we show that the photoactive complexes [(Cp)Fe(arene)]+ (Cp = cyclopentadienyl; arene = C6H6, C6H5Me) act as latent catalysts that allow for photochemical control over the onset of alkyd paint curing, without the need for antiskinning agents such as the volatile 2-butanone oxime normally used to prevent curing during paint storage. The highly soluble neutral complexes [(Cp)Fe(Ch)] and [(Cp)Fe(Ch’)] (Ch = cyclohexadienyl, Ch’ = methylcyclohexadienyl) readily convert to the photoactive complexes [(Cp)Fe(arene)]+ upon oxidation in alkyd, allowing the latter to be dosed in a wide range of concentrations. Infrared and Raman studies show similar spectral changes of the alkyd paint matrix as have been observed in alkyd curing mediated by well-known, industrially applied cobalt- and manganese-based catalyst Co(neodecanoate)2 and [(Me3TACN)2Mn2(μ-OOCR)3](OOCR). The [(Cp)Fe(Ch)]/[(Cp)Fe(arene)]+ system performs equally well as these cobalt- and manganese-based catalysts in terms of drying time and outperform the manganese catalyst by showing a hardness development (increase) similar to that of the cobalt-based catalyst. Based on electron paramagnetic resonance and light-activity studies, we propose that photolysis of [(Cp)Fe(arene)]+ generates short-lived active FeII species, explaining the desired latency. The [(Cp)Fe(Ch)]/[(Cp)Fe(arene)]+ alkyd curing systems presented herein are unique examples of intrinsically latent paint curing catalysts that (1) are based on an abundant and harmless transition metal (Fe), (2) do not require any antiskinning agents, and (3) show favorable performance in terms of drying times and hardness development.Polarized or precision targeting of protein complexes to their destinations is fundamental to cellular homeostasis, but the mechanism underpinning directional protein delivery is poorly understood. Here, we use the uropod targeting HIV synapse as a model system to show that the viral assembly machinery Gag is copolarized with the intracellular calcium (Ca2+) gradient and binds specifically with Ca2+. Conserved glutamic/aspartic acids flanking endosomal sorting complexes required for transport binding motifs are major Ca2+ binding sites. Deletion or mutation of these Ca2+ binding residues resulted in altered protein trafficking phenotypes, including (i) changes in the Ca2+-Gag distribution relationship during uropod targeting and/or (ii) defects in homo/hetero-oligomerization with Gag. Mutation of Ca2+ binding amino acids is associated with enhanced ubiquitination and a decline in virion release via uropod protein complex delivery. Our data that show Ca2+-protein binding, via the intracellular Ca2+ gradient, represents a mechanism that regulates intracellular protein trafficking.Rigorous investigations of the organobase-catalyzed ring-opening polymerizations (ROPs) of a series of five-membered cyclic carbonate monomers derived from glucose revealed that competing transcarbonylation reactions scrambled the regiochemistries of the polycarbonate backbones. Regioirregular poly(2,3-α-d-glucose carbonate) backbone connectivities were afforded by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed ROPs of three monomers having different cyclic acetal protecting groups through the 4- and 6-positions. Small molecule studies conducted upon isolated unimers and dimers indicated a preference for Cx-O2 vs Cx-O3 bond cleavage from tetrahedral intermediates along the pathways of addition-elimination mechanisms when the reactions were performed at room temperature. Furthermore, treatment of isolated 3-unimer or 2-unimer, having the carbonate linkage in the 3- or 2-position as obtained from either Cx-O2 or Cx-O3 bond cleavage, respectively, gave the same 7426 (3-unimer2-unimer) ratio, confirming the occurrence of transcarbonylation reactions with a preference for 3-unimer vs.