Activity

  • Carney Jantzen posted an update 22 hours, 23 minutes ago

    We concluded that intelligence research does show signs of low power and publication bias, but that these problems seem less severe than in many other scientific fields.Although the literature does not provide evidence of health risks from exposure to fluoride (F) in therapeutic doses, questions remain about the effects of long-term and high-dose use on the function of the central nervous system. The objective of this study was to investigate the effect of long-term exposure to F at levels similar to those found in areas of artificial water fluoridation and in areas of endemic fluorosis on biochemical, proteomic, cell density, and functional parameters associated with the cerebellum. For this, mice were exposed to water containing 10 mg F/L or 50 mg F/L (as sodium fluoride) for 60 days. After the exposure period, the animals were submitted to motor tests and the cerebellum was evaluated for fluoride levels, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (MDA), and nitrite levels (NO). The proteomic profile and morphological integrity were also evaluated. The results showed that the 10 mg F/L dose was able to decrease the ACAP levels, and the animals exposed to 50 mg F/L presented lower levels of ACAP and higher levels of MDA and NO. The cerebellar proteomic profile in both groups was modulated, highlighting proteins related to the antioxidant system, energy production, and cell death, however no neuronal density change in cerebellum was observed. Functionally, the horizontal exploratory activity of both exposed groups was impaired, while only the 50 mg F/L group showed significant changes in postural stability. No motor coordination and balance impairments were observed in both groups. Our results suggest that fluoride may impair the cerebellar oxidative biochemistry, which is associated with the proteomic modulation and, although no morphological impairment was observed, only the highest concentration of fluoride was able to impair some cerebellar motor functions.Over the past decade, a large amount of RNA sequencing (RNA-seq) data were deposited in public repositories, and more are being produced at an unprecedented rate. However, there are few open source tools with point-and-click interfaces that are versatile and offer streamlined comprehensive analysis of RNA-seq datasets. To maximize the capitalization of these vast public resources and facilitate the analysis of RNA-seq data by biologists, we developed a web application called OneStopRNAseq for the one-stop analysis of RNA-seq data. OneStopRNAseq has user-friendly interfaces and offers workflows for common types of RNA-seq data analyses, such as comprehensive data-quality control, differential analysis of gene expression, exon usage, alternative splicing, transposable element expression, allele-specific gene expression quantification, and gene set enrichment analysis. Users only need to select the desired analyses and genome build, and provide a Gene Expression Omnibus (GEO) accession number or Dropbox links to sequence files, alignment files, gene-expression-count tables, or rank files with the corresponding metadata. Our pipeline facilitates the comprehensive and efficient analysis of private and public RNA-seq data.Synapses play a central role for the processing of information in the brain and have been analyzed in countless biochemical, electrophysiological, imaging, and computational studies. The functionality and plasticity of synapses are nevertheless still difficult to predict, and conflicting hypotheses have been proposed for many synaptic processes. In this review, we argue that the cause of these problems is a lack of understanding of the spatiotemporal dynamics of key synaptic components. Fortunately, a number of emerging imaging approaches, going beyond super-resolution, should be able to provide required protein positions in space at different points in time. Mathematical models can then integrate the resulting information to allow the prediction of the spatiotemporal dynamics. We argue that these models, to deal with the complexity of synaptic processes, need to be designed in a sufficiently abstract way. Taken together, we suggest that a well-designed combination of imaging and modelling approaches will result in a far more complete understanding of synaptic function than currently possible.

    Hemophilia A and B are X-linked congenital bleeding disorders characterized by recurrent hemarthroses leading to specific changes in the synovium and cartilage, which finally result in the destruction of the joint this process is called hemophilic arthropathy (HA). This review highlights the most prominent molecular biomarkers found in the literature to discuss their potential use in the clinical practice to monitor bleeding, to assess the progression of the HA and the effectiveness of treatments.

    A review of the literature was performed on PubMed and Embase, from 3 to 7 August 2020. Study selection and data extraction were achieved independently by two authors and the following inclusion criteria were determined a priori English language, available full text and articles published in peer-reviewed journal. In addition, further articles were identified by checking the bibliography of relevant articles and searching for the studies cited in all the articles examined.

    Eligible studies obtained at the end of the search and screen process were seventy-three (73).

    Despite the surge of interest in the clinical use of biomarkers, current literature underlines the lack of their standardization and their potential use in the clinical practice preserving the role of physical examination and imaging in early diagnosis.

    Despite the surge of interest in the clinical use of biomarkers, current literature underlines the lack of their standardization and their potential use in the clinical practice preserving the role of physical examination and imaging in early diagnosis.We report on the observation of the detachment in situ and in vivo of Dunaliella tertiolecta microalgae cells from a glass surface using a 1064 nm wavelength trapping laser beam. The principal bends of both flagella of Dunaliella were seen self-adhered to either the top or bottom coverslip surfaces of a 50 μm thick chamber. When a selected attached Dunaliella was placed in the trapping site, it photoresponded to the laser beam by moving its body and flagellar tips, which eventually resulted in its detachment. The dependence of the time required for detachment on the trapping power was measured. Selleckchem Tacrine No significant difference was found in the detachment time for cells detached from the top or bottom coverslip, indicating that the induced detachment was not due solely to the optical forces applied to the cells. After detachment, the cells remained within the optical trap. Dunaliella detached from the bottom were seen rotating about their long axis in a counterclockwise direction, while those detached from the top did not rotate.