Activity

  • Blackwell Ejlersen posted an update 1 day, 17 hours ago

    This work demonstrates a powerful new approach to DEL screening, which eliminates the need for highly purified active target protein and which performs the screening under physiological relevant conditions and thus is poised to increase the DEL amenable target space and reduce the attrition rates.The mechanism of the Lewis base F- catalyzed 1,3-dipolar cycloaddition between CO2 and nitrilimines is interrogated using DFT calculations. F- activates the nitrilimine, not CO2 as proposed in the literature, and imparts a significant rate enhancement for the cycloaddition. The origin of this catalysis is in the strength of the primary orbital interactions between the reactants. The Lewis base activated nitrilimine-F- has high-lying filled FMOs. The smaller FMO-LUMO gap promotes a rapid nucleophilic attack and overall cycloaddition with CO2.Finding low-energy molecular conformers is challenging due to the high dimensionality of the search space and the computational cost of accurate quantum chemical methods for determining conformer structures and energies. Here, we combine active-learning Bayesian optimization (BO) algorithms with quantum chemistry methods to address this challenge. Using cysteine as an example, we show that our procedure is both efficient and accurate. After only 1000 single-point calculations and approximately 80 structure relaxations, which is less than 10% computational cost of the current fastest method, we have found the low-energy conformers in good agreement with experimental measurements and reference calculations. To test the transferability of our method, we also repeated the conformer search of serine, tryptophan, and aspartic acid. The results agree well with previous conformer search studies.Chicoric acid (CA) can display health benefits as a dietary polyphenol. However, as CA is widely metabolized in vivo, the actual compounds responsible for its bioactivities are not entirely known. Herein, the major methylated metabolites of CA were isolated from an in vitro co-incubation system, and their structures were elucidated. The antioxidant activities of the monomethylated metabolites (M1) and dimethylated metabolites (M2) of CA were evaluated against H2O2-induced oxidative stress damage in HepG2 cells and compared to CA. The results indicated that both M1 and M2 had better antioxidant capacities than CA by increasing cell viability, improving mitochondrial function, and balancing cellular redox status. Selleck ARS-1620 These compounds also prevented oxidative stress by mediating the Keap1/Nrf2 transcriptional pathway and downregulating enzyme activity. The current research indicates that the methylated metabolites of CA could potentially be the candidates that are responsible for the biological efficacies attributed to CA.In the present study, we propose, validate, and give first applications for large-scale systems of coarse-grained models suitable for filler/polymer interfaces based on carbon black (CB) and polyethylene (PE). The computational efficiency of the proposed approach, based on hybrid particle-field models (hPF), allows large-scale simulations of CB primary particles of realistic size (∼20 nm) embedded in PE melts. The molecular detailed models, here introduced, allow a microscopic description of the bound layer, through the analysis of the conformational behavior of PE chains adsorbed on different surface sites of CB primary particles, where the conformational behavior of adsorbed chains is different from models based on flat infinite surfaces. On the basis of the features of the systems, an optimized version of OCCAM code for large-scale (up to more than 8 million of beads) parallel runs is proposed and benchmarked. The computational efficiency of the proposed approach opens the possibility of a computational screening of the bound layer, involving the optimal combination of surface chemistry, size, and shape of CB aggregates and the molecular weight distribution of the polymers achieving an important tool to address the polymer/fillers interface and interphase engineering in the polymer industry.A multicomponent reaction of triazoloketones, primary amines, and 4-nitrophenyl azide was developed for the synthesis of hitherto unknown angularly fused/linear bitriazoles. The two-stage mechanism was well proven by the isolation of the intermediate. This sequential reaction consists of Cornforth rearrangement and triazolization, which has also been demonstrated in a one-pot manner.The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy, called the electrostatic anchor, formed through the efficient Coulombic interaction between the gold electrodes and the positively charged pyridinium terminal groups. Our results show that these pyridinium groups serve as efficient electrostatic anchors forming robust gold-molecule-gold junctions. We have also observed binary switching in dicationic viologen molecular junctions, demonstrating an electron injection-induced redox switching in single-molecule junctions. We attribute the difference in low- and high-conductance states to a dicationic ground state and a radical cationic metastable state, respectively. Overall, this anchoring strategy and redox-switching mechanism could constitute the basis for a new class of redox-activated single-molecule switches.A nuclear magnetic resonance (NMR) spectrometer is a key instrument in the organic synthesis laboratory for structure determination, reaction control, and compound purity analysis. In addition to qualitative analysis, the application of NMR for quantitative analysis (qNMR) is gaining popularity. qNMR allows for simple quantification of crude product mixtures, determination of reaction yields, and purity of organic compounds. The determination of NMR yield requires the addition of an internal standard to each sample. Herein, we report a method where CDCl3 residual solvent signal is used as an internal standard for qNMR after quantification in the solvent batch. link2 This method significantly simplifies sample preparation and allows straightforward recovery of the analyte by the simple evaporation of the NMR solvent. The accuracy of the method is comparable to qNMR with 1,3,5-trimethoxybenzene as an internal standard if the herein described guidelines are followed.Trace doping is an efficient way to improve the stability of nickel-rich layered cathodes for lithium-ion batteries, but the structural origin of such improvement, rather than a simple replacement, has been rarely explored. Herein, Ga dopants have been introduced into a nickel-rich host, LiNi0.9Co0.1O2, by a combination of coprecipitation and the solid-state sintering method. Structural analyses based on high-resolution synchrotron powder diffraction data and X-ray absorption spectra suggest that Ga preferentially sits in the NiO6 slabs, resulting in reduced Ni/Li cationic mixing and depressed lattice vibration. Due to the smaller dissociation energy of Ga-O bonds, some Ga3+ cations migrate first toward Li layers upon delithiation and form the GaO4 tetrahedral symmetry irreversibly during the electrochemical process, which acts as a pillar in the subsequent electrochemical processes. As a result, the doped material exhibits both improved cycling performance and rate capability under a high operating voltage (4.5 V) due to the stabilized structure in the lithiation/delithiation process. This study illustrates how a dopant enhances the electrochemical stability in views of both pristine and charged structure and suggests that a positive effect is expected from the dopant favoring the tetrahedral symmetry (e.g., Al).Application of natural products as new green agrochemicals with low average lifetime, low concentration doses, and safety is both complex and expensive due to chemical modification required to obtain desirable physicochemical properties. Transport, aqueous solubility, and bioavailability are some of the properties that have been improved using functionalized metal-organic frameworks based on zinc for the encapsulation of bioherbicides (ortho-disulfides). An in situ method has been applied to achieve encapsulation, which, in turn, led to an improvement in water solubility by more than 8 times after 2-hydroxypropyl-β-cyclodextrin HP-β-CD surface functionalization. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and integrated differential phase contrast (iDPC) imaging techniques were employed to verify the success of the encapsulation procedure and crystallinity of the sample. Inhibition studies on principal weeds that infect rice, corn, and potato crops gave results that exceed those obtained with the commercial herbicide Logran. This finding, along with a short synthesis period, i.e., 2 h at 25 °C, make the product an example of a new generation of natural-product-based herbicides with direct applications in agriculture.Sustainability endorses high quality, long-lasting goods. Durable goods, however, often require substantial amounts of energy during their production and use-phase and indirectly through complementary products and services. We quantify the global household’s final energy footprints (EFs) of durable goods and the complementary goods needed to operate, service and maintain durables. We calculate the EFs of 200 goods across 44 individual countries and 5 world regions for the period of 1995-2011. In 2011, we find 68% of the total global household’s EF (218 EJ) is durable-related broken down as follows 10% is due to the production of durables per se, 7% is embodied in goods complementary to durables (consumables and services) and 51% is operational energy. At the product level, the highest durable-related EFs are transport goods (148-648 MJ/cap), housing goods (40-811 MJ/cap), electric appliances (34-181 MJ/cap), and “gas stoves and furnaces” (40-100 MJ/cap). Between 1995 and 2011, the global household EF increased by 28% (48 EJ), of which 72% was added by durable-related energy. Globally, a 10% income growth corresponded to an increase in EF by 9% in durables, 11% in complementary consumables and 13% in complementary services-with even higher elasticities in the emerging economies. The average EF of the emerging economies (35 GJ/cap) is 2.5 times lower than in advanced economies (86 GJ/cap). Efficiency gains were detected in 47 out of 49 regions, but only 16 achieved net energy reductions. The large share of durable-related EF across regions (40-88%) confirms the dominance of durables in driving EFs, but the diversity of patterns suggests that policy and social factors influence durable-dependency. Demand-side solutions targeting ownership and inter-linkages between durables and complements are key to reduce global energy demand.Protein misfolding and aggregation are linked to neurodegenerative diseases of mammals and suboptimal protein expression within biotechnology. Tools for monitoring protein aggregates are therefore useful for studying disease-related aggregation and for improving soluble protein expression in heterologous hosts for biotechnology purposes. link3 In this work, we developed a promoter-reporter system for aggregated protein on the basis of the yeast native response to misfolded protein. To this end, we first studied the proteome of yeast in response to the expression of folded soluble and aggregation-prone protein baits and identified genes encoding proteins related to protein folding and the response to heat stress as well as the ubiquitin-proteasome system that are over-represented in cells expressing an aggregation-prone protein. From these data, we created and validated promoter-reporter constructs and further engineered the best performing promoters by increasing the copy number of upstream activating sequences and optimization of culture conditions.