Activity

  • McFadden Rooney posted an update 4 days, 11 hours ago

    In order to study the degradation laws and mechanisms of admixture concretes with single-added SO42- and composite of Mg2+ and SO42-, respectively, the durability tests were conducted on three types of mineral admixture concretes (concretes with single-added metakaolin (MK), single-added ultra-fine fly ash (UFA), and composite of metakaolin and ultra-fine fly ash (MF), and one reference concrete. In these tests, the 10% Na2SO4 solution and the 10% MgSO4 solution were used as the erosion medium, and the drying-wetting circle method was applied. It can be seen from the compressive tests and grey relational analysis that the MK admixture can improve the anti-Na2SO4-erosion capability of the concrete significantly, but weaken its anti-MgSO4-erosion capability; the UFA admixture can improve both the anti-Na2SO4-erosion and the anti-MgSO4-erosion capability of the concrete; and the composite admixture has superimposed effects and can enhance erosion resistance against these two erosion mediums. The phase composition and the changes of the macro morphology and the micro structure during the erosion process caused by mono sulfate ions and complex ions has been observed through X-ray diffraction (XRD), FTIR spectrum (FTIR), and scanning electron microscope (SEM), based on which it was determined that the erosion of single-added SO42- ions can produce erosive outputs of ettringite, gypsum, and mirabilite in the concrete, and cause corner scaling or deformation. Mg2+ and SO42- reacted in the concrete and produced brucite, M-S-H, ettringite, and gypsum, etc. The erosion of complex ions can cause scaling of the cement mortar and aggregate from the surface or the desquamation of corners.In recent years, the interest in radar automatic target recognition (RATR) based on the carrier-free ultra-wideband (UWB) radar has been increasing. Compared with narrow-band and other bandwidth radars, the echo signal of the carrier-free UWB radar includes more comprehensive and detailed information with respect to the targeted object. In this paper, we first utilized 3ds Max to acquire accurate geometric models and applied a time-domain integral equation (TDIE) for echo signal acquisition under the condition that the transmitted signals had an extremely short duration period. By comparing the simulated waveform with the actual one, the accuracy of the electromagnetic modeling is verified. Furthermore, given that the actual environment is full of noise and clutter, we propose an improved two-dimensional variational mode decomposition (2D-IVMD), and an algorithm is proposed to eliminate noise and extract edge features preliminarily, which lays a foundation for further in-depth feature extraction. Then, the deep conventional neural network (DCNN) is introduced for the final recognition. The results show that the proposed methods achieve promising classification performance under the condition of low signal-to-noise ratio (SNR) values.Accumulating evidence suggests that microRNAs (miRNAs) are a contributing factor to neurodegenerative diseases. Although altered miRNA profiles in serum or plasma have been reported for several neurodegenerative diseases, little is known about the interaction between dysregulated miRNAs and their protein binding partners. We found significant alterations of the miRNA abundance pattern in serum and in isolated serum-derived extracellular vesicles of Parkinson’s disease (PD) patients. The differential expression of miRNA in PD patients was more robust in serum than in isolated extracellular vesicles and could separate PD patients from healthy controls in an unsupervised approach to a high degree. We identified a novel protein interaction partner for the strongly dysregulated hsa-mir-4745-5p. Our study provides further evidence for the involvement of miRNAs and HNF4a in PD. The demonstration that miRNA-protein binding might mediate the pathologic effects of HNF4a both by direct binding to it and by binding to proteins regulated by it suggests a complex role for miRNAs in pathology beyond the dysregulation of transcription.Diabetes, being a metabolic disease dysregulates a large number of metabolites and factors. However, among those altered metabolites, hyperglycemia is considered as the major factor to cause an increase in oxidative stress that initiates the pathophysiology of retinal damage leading to diabetic retinopathy. Diabetes-induced oxidative stress in the diabetic retina and its damaging effects are well known, but still, the exact source and the mechanism of hyperglycemia-induced reactive oxygen species (ROS) generation especially through mitochondria remains uncertain. In this study, we analyzed precisely the generation of ROS and the antioxidant capacity of enzymes in a real-time situation under ex vivo and in vivo conditions in the control and streptozotocin-induced diabetic rat retinas. We also measured the rate of flux through the citric acid cycle by determining the oxidation of glucose to CO2 and glutamate, under ex vivo conditions in the control and diabetic retinas. Measurements of H2O2 clearance from the ex vivo control and diabetic retinas indicated that activities of mitochondrial antioxidant enzymes are intact in the diabetic retina. Short-term hyperglycemia seems to influence a decrease in ROS generation in the diabetic retina compared to controls, which is also correlated with a decreased oxidation rate of glucose in the diabetic retina. However, an increase in the formation of ROS was observed in the diabetic retinas compared to controls under in vivo conditions. Thus, our results suggest of diabetes/hyperglycemia-induced non-mitochondrial sources may serve as major sources of ROS generation in the diabetic retina as opposed to widely believed hyperglycemia-induced mitochondrial sources of excess ROS. Therefore, hyperglycemia per se may not cause an increase in oxidative stress, especially through mitochondria to damage the retina as in the case of diabetic retinopathy.We prepared novel bipolar membranes (BPMs) consisting of cation and anion exchange layers (CEL and AEL) using radiation-induced asymmetric graft polymerization (RIAGP). In this technique, graft polymers containing cation and anion exchange groups were introduced into a base film from each side. BEZ235 purchase To create a clear CEL/AEL boundary, grafting reactions were performed from each surface side using two graft monomer solutions, which are immiscible in each other. Sodium p-styrenesulfonate (SSS) and acrylic acid (AA) in water were co-grafted from one side of the base ethylene-co-tetrafluoroethylene film, and chloromethyl styrene (CMS) in xylene was simultaneously grafted from the other side, and then the CMS units were quaternized to afford a BPM. The distinct SSS + AA- and CMS-grafted layers were formed owing to the immiscibility of hydrophilic SSS + AA and hydrophobic CMS monomer solutions. This is the first BPM with a clear CEL/AEL boundary prepared by RIAGP. However, in this BPM, the CEL was considerably thinner than the AEL, which may be a problem in practical applications.