Activity

  • Kamp Wilkinson posted an update 1 week, 2 days ago

    Extensive monitoring in intensive care units (ICUs) generates large quantities of data which contain numerous trends that are difficult for clinicians to systematically evaluate. Current approaches to such heterogeneity in electronic health records (EHRs) discard pertinent information. Potassium Channel inhibitor We present a deep learning pipeline that uses all uncurated chart, lab, and output events for prediction of in-hospital mortality without variable selection. Over 21,000 ICU patients and tens of thousands of variables derived from the MIMIC-III database were used to train and validate our model. Recordings in the first few hours of a patient’s stay were found to be strongly predictive of mortality, outperforming models using SAPS II and OASIS scores, AUROC 0.72 and 0.76 at 24 h respectively, within just 12 h of ICU admission. Our model achieves a very strong predictive performance of AUROC 0.85 (95% CI 0.83-0.86) after 48 h. Predictive performance increases over the first 48 h, but suffers from diminishing returns, providing rationale for time-limited trials of critical care and suggesting that the timing of decision making can be optimised and individualised.We assessed the inter-visit repeatability of 15 × 9-mm2 swept-source OCTA (SS-OCTA; PLEX Elite 9000, Carl Zeiss Meditec) metrics in 14 healthy participants. We analysed the perfusion density (PD) of large vessels, superficial capillary plexus (SCP), and deep capillary plexus (DCP) as well as choriocapillaris flow voids in 2 different regions the macular region and peripheral region. Also, retinal plexus metrics were processed further using different filters (Hessian, Gabor and Bayesian) while choriocapillaris flow voids were calculated with 1 and 1.25 standard deviation (SD) thresholding algorithms. We found excellent repeatability in the perfusion densities of large vessels (ICC > 0.96). Perfusion densities varied with different filters in the macular region (SCP 24.12-38.57% and DCP 25.16-38.50%) and peripheral (SCP 30.52-39.84% and DCP 34.19-41.60%) regions. The ICCs were lower in the macular region compared to the peripheral region and lower for DCP than for SCP. For choriocapillaris flow voids, the 1.25 SD threshold resulted in fewer flow voids, while a good ICC (ICC > 0.81) was achieved using either threshold settings for flow void features in both regions. Our results suggest good repeatability of widefield SS-OCTA for the measurements of retinal perfusion density and choriocapillaris flow voids, but measurements from different filters should not be interchanged.The efficacy of aminolevulinic acid (5-ALA)-based photodynamic diagnosis (5-ALA-PDD) and photodynamic therapy (5-ALA-PDT) is dependent on 5-ALA-induced cancer-specific accumulation of protoporphyrin IX (PpIX). We previously reported that inhibition of oncogenic Ras/MEK increases PpIX accumulation in cancer cells by reducing PpIX efflux through ATP-binding cassette sub-family B member 1 (ABCB1) and ferrochelatase (FECH)-catalysed PpIX conversion to haem. Here, we sought to identify the downstream pathways of Ras/MEK involved in the regulation of PpIX accumulation via ABCB1 and FECH. First, we demonstrated that Ras/MEK activation reduced PpIX accumulation in RasV12-transformed NIH3T3 cells and HRAS transgenic mice. Knockdown of p90 ribosomal S6 kinases (RSK) 2, 3, or 4 increased PpIX accumulation in RasV12-transformed NIH3T3 cells. Further, treatment with an RSK inhibitor reduced ABCB1 expression and increased PpIX accumulation. Moreover, HIF-1α expression was reduced when RasV12-transformed NIH3T3 cells were treated with a MEK inhibitor, demonstrating that HIF-1α is a downstream element of MEK. HIF-1α inhibition decreased FECH activity and increased PpIX accumulation. Finally, we demonstrated the involvement of RSKs and HIF-1α in the regulation of PpIX accumulation in human cancer cell lines. These results demonstrate that the RSK-ABCB1 and HIF-1α-FECH axes are the downstream pathways of Ras/MEK involved in the regulation of PpIX accumulation.Aquacultivated sea cucumbers often suffer from SKin Ulceration Diseases (SKUDs). SKUDs have been observed in six holothuroid species from nine countries. All SKUDs present a similar symptom-the skin ulceration-and can be induced by bacteria, viruses, or abiotic factors. We here provide an update on SKUDs in holothuroids and analyse the case of the SKUD observed in Holothuria scabra in Madagascar. Field observations revealed a seasonality of the disease (i.e. wintertime maximum peak). Morphological analyses of integument ulcers showed that sea cucumbers react by forming a collagen fibre plug. Metagenomic analyses revealed a higher proportion of Vibrionaceae (Gammaproteobacteria) in ulcers in comparison to the healthy integument of the same individuals. Experimental infection assays were performed with ulcer crude extracts and bacteria isolated from these extracts (e.g. Vibrio parahaemolyticus) but did not significantly induce skin ulceration. Our results suggest that the disease is not induced by a pathogen or, at the very least, that the pathogen is not found within the ulcers as the disease is not transmissible by contact. An initial cause of the SKUD in Madagascar might be the repeated and prolonged exposures to cold temperatures. Opportunistic bacteria could settle in the dermis of ulcerated individuals and promote the ulcer extension. We propose a general nomenclature for SKUDs based on the acronym of the disease, the affected sea cucumber species (e.g. Hs for Holothuria scabra), the concerned region using an ISO code 3166-2 (e.g. MG for Madagascar), the description date (e.g. 20 for the year 2020), and, when known, the inducing agent (first letter of the general taxon, b for bacteria, v for virus in currently known cases; a a if it is an abiotic inducing parameter; nothing if the inducing cause has not been precisely identified). The disease described in this work will be designated under the name SKUD Hs-MG-20.Decompressive craniectomy (DC) is often required to manage rising intracranial pressure after traumatic brain injury (TBI). Syndrome of the trephine (SoT) is a reversible neurologic condition that often occurs following DC as a result of the unrepaired skull. The purpose of the present study is to characterize neurological impairment following TBI in rats with an unrepaired craniectomy versus rats with a closed cranium. Long Evans male rats received a controlled cortical impact (CCI) over the caudal forelimb area (CFA) of the motor cortex. Immediately after CCI, rats received either a hemi-craniectomy (TBI Open Skull Group) or an immediate acrylic cranioplasty restoring cranial anatomy (TBI Closed Skull Group). Motor performance was assessed on a skilled reaching task on post-CCI weeks 1-4, 8, 12, and 16. Three weeks after the CCI injury, the TBI Closed Skull Group demonstrated improved motor performance compared to TBI Open Skull Group. The TBI Closed Skull Group continued to perform better than the TBI Open Skull Group throughout weeks 4, 8, 12 and 16.