Activity

  • Gaarde Macias posted an update 1 week, 2 days ago

    Ample evidence has demonstrated that α-Synuclein can propagate from one area of the brain to others via cell-to-cell transmission, which might be the underlying mechanism for pathological propagation and the disease progression of Parkinson’s disease (PD). Crenolanib Recent reports have demonstrated cell surface receptor-mediated cell-to-cell transmission of α-synuclein. Memantine decreased the levels of internalized cytosolic α-synuclein and led to attenuation in α-synuclein-induced cell death. Specifically, memantine attenuated α-synuclein-induced expression of clathrin and EEA1, and increased expression of NR2A subunits. Moreover, memantine inhibited propagation of extracellular α-synuclein and thus, decreased the expression of the phosphorylated form of α-synuclein in dopaminergic neurons of the substantia nigra, which was accompanied by increased survival of dopaminergic neurons with functional improvement of motor deficits. The present study demonstrated that memantine modulates extracellular α-synuclein propagation by inhibiting interactions between α-synuclein and NR2A subunits, which leads to neuroprotective effects on nigral dopaminergic neurons against α-synuclein-enriched conditions. The repositioning use of memantine in α-synuclein propagation needs to be further evaluated in patients with α-synucleinopathies as an effective therapeutic approach.The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

    The global literature on the links between climate change and human health is large, increasing exponentially, and it is no longer feasible to collate and synthesise using traditional systematic evidence mapping approaches. We aimed to use machine learning methods to systematically synthesise an evidence base on climate change and human health.

    We used supervised machine learning and other natural language processing methods (topic modelling and geoparsing) to systematically identify and map the scientific literature on climate change and health published between Jan 1, 2013, and April 9, 2020. Only literature indexed in English were included. We searched Web of Science Core Collection, Scopus, and PubMed using title, abstract, and keywords only. We searched for papers including both a health component and an explicit mention of either climate change, climate variability, or climate change-relevant weather phenomena. We classified relevant publications according to the fields of climate research, climate ffice.

    Foreign, Commonwealth & Development Office.ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.Inflammatory bowel diseases, principally Crohn’s disease and ulcerative colitis, are multifactorial chronic conditions. Alterations in gut microbial patterns partly affect disease onset and severity. Moreover, the evolution of dietary patterns, and their effect on gut microbial behaviour, have been shown to play a crucial role in disease processes. This Viewpoint reviews the role of dietary patterns, their influence on the structure and function of the gut microbiome, and their effects on inflammation and immunity in individuals with inflammatory bowel disease. We also discuss innovative dietary intervention strategies, summarise findings that have been used to develop recommendations for clinical practice, and provide suggestions for the design of future studies for development of precision nutrition in patients with inflammatory bowel disease.