-
Beasley Kjellerup posted an update 1 week, 2 days ago
In this context, this contribution expands the knowledge of the behavior of MNPs in contact with in vitro models and proposes the nanodevices studied here as potential theranostic agents for the monitoring of the progress of CRC and the evolution of its treatment.
The prognostic significance of serial echocardiography and its rate of change in children with dilated cardiomyopathy (DCM) is incompletely defined.
We retrospectively analysed up to 4 serial echocardiograms. Associations between mortality/transplant and echocardiographic parameters over time and between outcomes and the rate of change of echocardiographic parameters were analysed. Estimation of patient-specific intercepts and slopes was done using linear regression models.
Fifty-seven DCM children were studied (50% male; median age, 0.6 year; average follow-up, 2.1 ± 2.4 years). The median time to transplant or death was 2.0 years. Increased left ventricular (LV) diastolic (LVEDD) and systolic (LVESD) dimensions and myocardial performance index (MPI) were associated with increased mortality and transplant risk. Increased LV ejection fraction, mitral E-deceleration time, right ventricular (RV) fractional area change, and tricuspid annular plane systolic excursion were associated with reduced mortality a DCM. Serial changes in these parameters may be useful to predict clinical outcomes.Ischemic mitral regurgitation is a valvular complication frequently seen in patients with coronary artery disease and associated with increased mortality and morbidity. Ischemic mitral regurgitation has a complex, heterogeneous and still incompletely understood pathophysiology involving both the mitral valve and the left ventricle. The occurrence of valve regurgitation in patients with ischemic cardiomyopathy will in return accelerate left ventricular remodeling and dysfunction, ultimately leading to irreversible heart failure. Diagnostic evaluation of ischemic mitral regurgitation is unique and different from the other causes of mitral regurgitation. The severity thresholds associated with outcomes are different from primary MR, and specific imaging characteristics are potentially useful to guide therapy. The use of imaging modalities such as 3D echocardiography and cardiac MRI can refine the diagnostic evaluation and help to choose the correct management. While multiple treatments are available to improve ihich case the term ischemic MR is used. Ischemic MR has a complex physiology involving both the LV and the mitral leaflets. Multiple characteristics are making the diagnostic evaluation and treatment of ischemic MR unique and distinct from the other causes of MR.Epileptogenesis, the gradual process that leads to epilepsy after brain injury or genetic mutations, is a complex network phenomenon, involving a variety of morphological, biochemical and functional brain alterations. Although risk factors for developing epilepsy are known, there is currently no treatment available to prevent epilepsy. We recently proposed a multitargeted, network-based approach to prevent epileptogenesis by rationally combining clinically available drugs and provided first proof-of-concept that this strategy is effective. Here we evaluated eight novel rationally chosen combinations of 14 drugs with mechanisms that target different epileptogenic processes. The combinations consisted of 2-4 different drugs per combination and were administered systemically over 5 days during the latent epileptogenic period in the intrahippocampal kainate mouse model of acquired temporal lobe epilepsy, starting 6 h after kainate. Doses and dosing intervals were based on previous pharmacokinetic and tolerability studies in mice. The incidence and frequency of spontaneous electrographic and electroclinical seizures were recorded by continuous (24/7) video linked EEG monitoring done for seven days at 4 and 12 weeks post-kainate, i.e., long after termination of drug treatment. Compared to vehicle controls, the most effective drug combination consisted of low doses of levetiracetam, atorvastatin and ceftriaxone, which markedly reduced the incidence of electrographic seizures (by 60%; p less then 0.05) and electroclinical seizures (by 100%; p less then 0.05) recorded at 12 weeks after kainate. This effect was lost when higher doses of the three drugs were administered, indicating a synergistic drug-drug interaction at the low doses. The potential mechanisms underlying this interaction are discussed. We have discovered a promising novel multitargeted combination treatment for modifying the development of acquired epilepsy.Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer’s disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV+ interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.Neurodegenerative disorders such as Alzheimer’s disease (AD), Lewy body diseases (LBD), and the amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) spectrum are defined by the accumulation of specific misfolded protein aggregates. However, the mechanisms by which each proteinopathy leads to neurodegeneration remain elusive. We hypothesized that there is a common “pan-neurodegenerative” gene expression signature driving pathophysiology across these clinically and pathologically diverse proteinopathies. click here To test this hypothesis, we performed a systematic review of human CNS transcriptomics datasets from AD, LBD, and ALS-FTD patients and age-matched controls in the Gene Expression Omnibus (GEO) and ArrayExpress databases, followed by consistent processing of each dataset, meta-analysis, pathway enrichment, and overlap analyses. After applying pre-specified eligibility criteria and stringent data pre-processing, a total of 2600 samples from 26 AD, 21 LBD, and 13 ALS-FTD datasets were included in the meta-analysis. The pan-neurodegenerative gene signature is characterized by an upregulation of innate immunity, cytoskeleton, and transcription and RNA processing genes, and a downregulation of the mitochondrial electron transport chain. Pathway enrichment analyses also revealed the upregulation of neuroinflammation (including Toll-like receptor, TNF, and NFκB signaling) and phagocytosis, and the downregulation of mitochondrial oxidative phosphorylation, lysosomal acidification, and ubiquitin-proteasome pathways. Our findings suggest that neuroinflammation and a failure in both neuronal energy metabolism and protein degradation systems are consistent features underlying neurodegenerative diseases, despite differences in the extent of neuronal loss and brain regions involved.Cordyceps guangdongensis is a well-known fungus with high nutritional and medicinal value. The metabolite profile of C. guangdongensis is similar to that of Ophiocordyceps sinensis. In plants and animals, microRNAs play important roles in regulating gene expression at the post-transcriptional level. MicroRNA-like RNAs (milRNAs) have been documented in several macro-fungi. To comprehensively investigate the milRNAs in C. guangdongensis, three small RNA libraries from the differentially developmental stages were constructed. Twenty-six conserved milRNAs were identified, and 19 novel milRNA candidates were predicted. Among them, 20 milRNAs were differentially expressed across the developmental processes, and 12 milRNAs were verified using stem-loop quantitative real-time reverse transcription polymerase chain reaction. In addition, the potential target genes of milRNA were predicted to be involved in the development of fruiting bodies and metabolite biosynthesis. This study is the first to report the milRNAs of C. guangdongensis, and provides important insights into studies of milRNA regulation pathways in ascomycete fungi.
Helicobacter pylori infection in humans typically begins with colonization of the gastric antrum. The initial Th1 response occasionally coincides with an increase in gastrin secretion. Subsequently, the gastritis segues to chronic atrophic gastritis, metaplasia, dysplasia and distal gastric cancer. Despite these well characterized clinical events, the link between inflammatory cytokines and non-cardia gastric cancer remains difficult to study in mouse models. Prior studies have demonstrated that overexpression of the Hedgehog (HH) effector GLI2 induces loss of gastrin (atrophy) and antral hyperplasia. To determine the link between specific cytokines, HH signaling and pre-neoplastic changes in the gastric antrum.
Mouse lines were created to conditionally direct IL1β or IFN-γ to the antrum using the Gastrin-CreERT2 and Tet activator. Primary cilia, which transduces HH signaling, on G cells were disrupted by deleting the ciliary motor protein KIF3a. Phenotypic changes were assessed by histology and western blots. A subclone of GLUTag enteroendocrine cells selected for gastrin expression and the presence of primary cilia was treated with recombinant SHH, IL1β or IFN-γ with or without kif3a siRNA.
IFN-γ increased gastrin and induced antral hyperplasia. However, antral expression of IL1β suppressed tissue and serum gastrin, while also inducing antral hyperplasia. link2 IFN-γ treatment of GLUTAg cells suppressed GLI2 and induced gastrin, without affecting cilia length. By contrast, IL1β treatment doubled primary cilia length, induced GLI2 and suppressed gastrin gene expression. link3 Knocking down kif3a in GLUTAg cells mitigated SHH or IL1β suppression of gastrin.
Overexpression of IL1β in the antrum was sufficient to induce antral hyperplasia coincident with suppression of gastrin via primary cilia. ORCID #0000-0002-6559-8184.
Overexpression of IL1β in the antrum was sufficient to induce antral hyperplasia coincident with suppression of gastrin via primary cilia. ORCID #0000-0002-6559-8184.