-
Enevoldsen Foldager posted an update 1 week, 2 days ago
Simulations gave good fits to available experimental kinetic data and confirmed that the same model structure is applicable to the four elements. BEs of 0.3 µg/L of Pr and Nd were derived from the provisional RfD of 0.5 mg/kg bw/day established by the U.S. EPA. These BEs can be updated according to new reference dose values (RfD). Overall, the model can contribute to a better understanding of the significance of biological measurements and to the inference of exposure levels; it can also be used for the modeling of other REEs. The BEs will further allow rapid screening of different populations using biological measurements in order to guide risk assessments.
Low birth weight and prematurity are important risk factors for death and disability, and may be affected by prenatal exposure to household air pollution (HAP).
We investigate associations between maternal exposure to carbon monoxide (CO) during pregnancy and birth outcomes (birth weight, birth length, head circumference, gestational age, low birth weight, small for gestational age, and preterm birth) among 1288 live-born infants in the Ghana Randomized Air Pollution and Health Study (GRAPHS). We evaluate whether evidence of malaria during pregnancy, as determined by placental histopathology, modifies these associations.
We observed effects of CO on birth weight, birth length, and gestational age that were modified by placental malarial status. Among infants from pregnancies without evidence of placental malaria, each 1ppm increase in CO was associated with reduced birth weight (-53.4g [95% CI -84.8, -21.9g]), birth length (-0.3cm [-0.6, -0.1cm]), gestational age (-1.0days [-1.8, -0.2days]), and weight-of impaired fetal growth in this malaria-endemic area.International wildlife trafficking (IWT) is a thriving and pervasive illegal enterprise that adversely affects modern societies. Yet, despite being globally recognized as a threat to biodiversity, national security, economy, and biosecurity, IWT remains largely unabated and is proliferating at an alarming rate. The increase in IWT is generally attributed to a lack of prioritization to curb wildlife crime through legal and scientific infrastructure. This review (1) lays out the damaging scope and influence of IWT; (2) discusses the potential of DNA marker systems, barcodes, and emerging molecular technologies, such as long-read portable sequencing, to facilitate rapid, in situ identification of species and individuals; and (3) encourages initiatives that promote quality and innovation. Interdisciplinary collaboration promises to be one of the most effective ways forward to surmounting the complex scientific and legal challenges posed by IWT.One approach to elucidating the principles of regeneration is to investigate mechanisms that regenerate a target organ. Planarian eyes are discrete, visible structures that are dispensable for viability, making them powerful for studying the logic of regeneration. Fate specification in eye regeneration occurs in stem cells (neoblasts), generating eye progenitors. Eye progenitor production is not responsive to the presence or absence of the eye, with regeneration explained by constant progenitor production in the appropriate positional environment. Eye progenitors display coarse spatial specification. A combination of eye-extrinsic cues and self-organization with differentiated eye cells dictate where migratory eye progenitors target. Finally, guidepost-like cells influence regenerating axons to facilitate the restoration of eye circuitry. These findings from the eye as a case study present a model that explains how regeneration can occur.Azo dye is the most versatile class of dyes used in the textile industry. Although the sulfidogenic process shows superiority in the removal of azo dye, the role of biogenic sulfide produced by sulfate-reducing bacteria (SRB) in the decolorization of azo dye is unclear. This study explored the mechanism of biogenic sulfide for removal of a model azo dye (Direct Red 81 (DR 81)) through biotic and abiotic batch tests with analysis of intermediates of the azo dye degradation. The results showed that biogenic sulfide produced from sulfate reduction directly cleaved two groups of azo bond (-NN-), thereby achieving decolorization. Moreover, the decolorization rate was enhanced by nearly 3-fold (up to 42 ± 1 mg/L-hr; removal efficiency > 99%) by adding an external carbon source or elevating the initial azo dye concentration. This study showed that biogenic sulfide plays an essential role in azo dye decolorization and provides a new avenue for the potential application of biogenic sulfide from the sulfidogenic system for the treatment of azo dye-laden wastewater.The degradation of dyes can generate harmful by-products, thereby requiring the need to evaluate the toxicity to aquatic organisms. This study aims to evaluate the chronic ecotoxicity of methylene blue dye degraded by the Fenton process using the non-target planarian Girardia tigrina as a sensitive bioindicator of environmental contamination. Fostamatinib order The bioassays evaluated the lethality of several concentrations of the untreated and degraded dye methylene blue (MB), as well as, their sub-lethal effects on locomotion, feeding, regeneration, and reproduction. In both acute and chronic tests, the degraded dye had a stronger toxic effect when compared to the untreated dye. This negative effect after treatment was mainly associated with the presence of residual hydrogen peroxide and iron (and consequently the hydroxyl radical formed). We conclude that the utilization of the Fenton process using less oxidizing agents should be considered as important alternatives for the protection of aquatic ecosystems, without compromising the efficient removal of MB.Photosynthetic bacteria have flexible metabolisms and strong environmental adaptability, and require cheap, but plentiful, energy supplements, which all enable their use in Cr(VI)-remediation. In this study, the effects of culture conditions on the total Cr removal rate were investigated for a newly identified strain of Rhodobacter sphaeroides SC01. The subcellular distribution and Cr(VI) reduction ability of four different cellular fractions were evaluated by scanning electron microscopy and transmission electron microscopy. Experiments indicated that the optimal culture conditions for total Cr removal included a culture temperature of 35 °C, pH of 7.20, an NaCl concentration of 5 g L-1, a light intensity of 4000 lx, and an initial cell concentration (OD680) of 0.15. In addition, most Cr was found in the cell membrane in the form of Cr (III) after reduction, while cell membranes had the highest Cr(VI) reduction rate (99%) compared to other cellular components. In addition, the physical and chemical properties of SC01 cells were characterized by FTIR, XPS, and XRD analyses, confirming that Cr was successfully absorbed on bacterial cell surfaces.