Activity

  • Chappell Walker posted an update 6 days, 5 hours ago

    8%). ALC-0159 Furthermore, PCV-3 DNA was detected in all tissue types analyzed. In conclusion, the present study demonstrates a higher frequency of PCV-3 DNA detection in fetuses from late periods of the gestation and highlights wide organ distributions of the virus in pig fetuses.The sudden outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic in December 2019 caused crises and health emergencies worldwide. The rapid spread of the virus created an urgent need for the development of an effective vaccine and mass immunization to achieve herd immunity. Efforts of scientific teams at universities and pharmaceutical companies around the world allowed for the development of various types of preparations and made it possible to start the vaccination process. However, it appears that the developed vaccines are not effective enough and do not guarantee long-lasting immunity, especially for new variants of SARS-CoV-2. Considering this problem, it is promising to focus on developing a Coronavirus Disease 2019 (COVID-19) mucosal vaccine. Such a preparation applied directly to the mucous membranes of the upper respiratory tract might provide an immune barrier at the primary point of virus entry into the human body while inducing systemic immunity. A number of such preparations against SARS-CoV-2 are already in various phases of preclinical and clinical trials, and several of them are very close to being accepted for general use, constituting a milestone toward pandemic containment.The innate immune response to P. aeruginosa pulmonary infections relies on a network of pattern recognition receptors, including intracellular inflammasome complexes, which can recognize both pathogen- and host-derived signals and subsequently promote downstream inflammatory signaling. Current evidence suggests that the inflammasome does not contribute to bacterial clearance and, in fact, that dysregulated inflammasome activation is harmful in acute and chronic P. aeruginosa lung infection. Given the role of mitochondrial damage signals in recruiting inflammasome signaling, we investigated whether mitochondrial-targeted therapies could attenuate inflammasome signaling in response to P. aeruginosa and decrease pathogenicity of infection. In particular, we investigated the small molecule, ZLN005, which transcriptionally activates peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, antioxidant defense, and cellular respiration. We demonstrate that P. aeruginosa infection promotes the expression of inflammasome components and attenuates several components of mitochondrial repair pathways in vitro in lung epithelial cells and in vivo in an acute pneumonia model. ZLN005 activates PGC-1α and its downstream effector, Sirtuin 3 (SIRT3), a mitochondrial-localized deacetylase important for cellular metabolic processes and for reactive oxygen species homeostasis. ZLN005 also attenuates inflammasome signaling induced by P. aeruginosa in bronchial epithelial cells and this action is dependent on ZLN005 activation of SIRT3. ZLN005 treatment reduces epithelial-barrier dysfunction caused by P. aeruginosa and decreases pathogenicity in an in vivo pneumonia model. Therapies that activate the PGC-1α-SIRT3 axis may provide a complementary approach in the treatment of P. aeruginosa infection.Single-nucleotide polymorphisms (SNPs) are one of the most common forms of genetic variation and as such are powerful tools for the identification of bacterial strains, their genetic diversity, phylogenetic analysis, and outbreak surveillance. In this study, we used 15 sets of SNP-containing primers to amplify and sequence the target Escherichia coli. Based on the combination of the 15-sequence primer sets, each SNP site encompassing forward and reverse primer sequences (620-919 bp) were aligned and an SNP-based marker was designed. Each SNP marker exists in at least two SNP sites at the 3′ end of each primer; one natural and the other artificially created by transition or transversion mutation. Thus, 12 sets of SNP primers (225-488 bp) were developed for validation by amplifying the target E. coli. Finally, a temperature gradient triplex PCR kit was designed to detect target E. coli strains. The selected primers were amplified in three genes (ileS, thrB, and polB), with fragment sizes of 401, 337, and 232 bp for E. coli O157H7, E. coli, and E. coli O145H28, respectively. This allele-specific SNP-based triplex primer assay provides serotype-specific detection of E. coli strains in one reaction tube. The developed marker would be used to diagnose, investigate, and control food-borne E. coli outbreaks.East Coast Fever (ECF), caused by Theileria parva, is a major constraint to improved livestock keeping in east and central Africa, including Zambia. To understand the dynamics and determine the candidates for immunization in Zambia’s Chongwe and Chisamba districts, a combination of Tp1 and Tp2 gene sequencing and microsatellite analysis using nine markers was conducted from which an abundance of Muguga, Kiambu, Serengeti and Katete epitopes in the field samples was obtained. Phylogenetic analysis showed six (Tp1) and three (Tp2) clusters with an absence of geographical origin clustering. The majority of haplotypes were related to Muguga, Kiambu, Serengeti and Katete, and only a few were related to Chitongo. Both antigens showed purifying selection with an absence of positive selection sites. Furthermore, low to moderate genetic differentiation was observed among and within the populations, and when vaccine stocks were compared with field samples, Chongwe samples showed more similarity to Katete and less to Chitongo, while Chisamba samples showed similarity to both Katete and Chitongo and not to Muguga, Kiambu or Serengeti. We conclude that the use of Katete stock for immunization trials in both Chongwe and Chisamba districts might produce desirable protection against ECF.The effect of probiotics in improving or maintaining oral health in orthodontic patients is understudied. The aim of this study is to evaluate the effect of probiotic administration in addition to tooth brushing on clinical gingival inflammation, plaque formation, subgingival microbiota composition, and salivary biomarkers of inflammation in adolescents with fixed orthodontic appliances. The present study is a 6-month, double-blind, two-arm, placebo-controlled, single-center trial, in which 116 adolescent volunteers aged 12-16 years will be recruited from the patients of the orthodontics clinic of the University Hospital of Lille, France. Subjects who meet the eligibility criteria will be allocated to one of the following groups (i) control two placebo lozenges per day for 90 days together with regular oral hygiene, (ii) test two probiotic lozenges per day for 90 days together with regular oral hygiene. Clinical assessment and biological sample collection will be performed at baseline, 3 and 6 months. In addition, compliance outcomes and adverse events will be monitored.

    The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic

    strains, spreading these bacteria to other hosts or directly contributing to human infection.

    A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the

    prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance.

    The presence of

    spp. was confirmed in 32.9% of samples. Based on

    -SVR sequencing, a total of 19 different alleles among the tested

    isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among

    isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level.

    These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of

    spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl

    isolates make them potentially able to induce infection in humans.

    These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans.To reduce the morbidity and mortality of candidemia patients through rapid treatment, the development of a simple, rapid molecular diagnostic method that is based on nucleic acid extraction and is superior to conventional methods for detecting Candida in the blood is necessary. We developed a multiplex Candida Pan/internal control (IC) loop-mediated isothermal amplification (LAMP) assay and a simple DNA extraction boiling protocol using Chelex-100 that could extract yeast DNA in blood within 20 min. The Chelex-100/boiling method for DNA extraction showed comparable efficiency to that of the commercial QIAamp UCP Pathogen Mini Kit using Candida albicans qPCR. In addition, the Candida Pan/IC LAMP assay showed superior sensitivity to that of general Candida Pan and species qPCRs against clinical DNA samples extracted with the QIAamp UCP Pathogen Mini Kit and Chelex-100/boiling method. The Candida Pan/IC LAMP assay followed by Chelex-100/boiling-mediated DNA extraction showed high sensitivity (100%) and specificity (100%) against clinical samples infected with Candida. These results suggest that the Candida Pan/IC LAMP assay could be used as a rapid molecular diagnostic test for candidemia.The raccoon (Procyon lotor) and the raccoon dog (Nyctereutes procyonoides) were introduced to Europe and, in the past decades, their populations have increased and adapted to synanthropic environments across Europe. In view of their possible further spread in Europe, the invasive species should be examined as potential reservoirs for helminths, including tapeworms. This study aims to investigate the prevalence and diversity of tapeworms in introduced wild carnivores in Poland by identifying cestode species based on copro-DNA analysis. A total of 214 individual fecal samples from non-native invasive carnivores, i.e., raccoons and raccoon dogs, and additionally 47 samples from native carnivores, i.e., European badgers (Meles meles), were analyzed for the presence of cestodes. PCR analysis of fecal samples targeting a fragment of mitochondrial (mt) 12S rRNA gene revealed the presence of cestode DNA in 19 of 103 (18.4%) raccoons, in 13 of 111 (11.7%) raccoon dogs and in 23 of 47 (48.9%) badgers. Sequence analysis demonstrated the presence of Mesocestoides litteratus in raccoons and raccoon dogs, while Mesocestoides lineatus was identified only in two samples derived from raccoon dogs. Moreover, in this study, Atriotaenia incisa was for the first time molecularly characterized by using fragments of mt 12S rRNA gene, and the DNA of this cestode species was detected in the fecal samples of all the examined host species.