Activity

  • Dawson Nieves posted an update 2 weeks ago

    When agglomeration level exceeded the threshold, the repellant effect of ER was no longer significant. In the upper reaches, we found no valid threshold and ER always exhibited a small and nonsignificant exclusion effect. The pollution haven hypothesis was more explanatory in the middle and upper reaches. In the end, some suggestions are provided to support the government to formulate differentiated environmental policies.Fragmented QRS complexes (fQRS) are common in patients with arrhythmogenic cardiomyopathy (ACM). A new method of fQRS quantification may aid early disease detection in pathogenic variant carriers and assessment of prognosis in patients with early stage ACM. Patients with definite ACM (n = 221, 66%), carriers of a pathogenic ACM-associated variant without a definite ACM diagnosis (n = 57, 17%) and control subjects (n = 58, 17%) were included. Quantitative fQRS (Q-fQRS) was defined as the total amount of deflections in the QRS complex in all 12 electrocardiography (ECG) leads. Q-fQRS was scored by a single observer and reproducibility was determined by three independent observers. FTY720 Q-fQRS count was feasible with acceptable intra- and inter-observer agreement. Q-fQRS count is significantly higher in patients with definite ACM (54 ± 15) and pathogenic variant carriers (55 ± 10) compared to controls (35 ± 5) (p less then 0.001). In patients with ACM, Q-fQRS was not associated with sustained ventricular arrhythmia (p = 0.701) at baseline or during follow-up (p = 0.335). Both definite ACM patients and pathogenic variant carriers not fulfilling ACM diagnosis have a higher Q-fQRS than controls. This may indicate that increased Q-fQRS is an early sign of disease penetrance. In concealed and early stages of ACM the role of Q-fQRS for risk stratification is limited.African swine fever (ASF) is spreading rapidly in Asia and was confirmed in Mongolia on 10 January 2019. Following the outbreak confirmation, a state emergency committee was established with representation from municipal authorities and other relevant authorities including the General Authority for Veterinary Services, National Emergency Management Agency, General Agency for Specialized Inspection, and the Ministry of Environment and Tourism. The committee provided recommendations and coordinated closely with the State Central Veterinary Laboratory to ensure quick outbreak investigation and response. In addition to outbreak investigations, sampling took place at farms and food premises and suggests a link between the outbreaks and swill feeding practices among backyard pig farmers. Upon government request, the Food and Agriculture Organization of the United Nations (FAO) deployed an expert team to assist in identifying risk factors for the disease spread and provide recommendations as how to improve disease prevention and response. Following the control measures from the involved agencies, the epidemic was successfully controlled and declared over on 11 April 2019. In total, the epidemic affected 83 pig farming households and led to a total of 2862 dead or culled pigs in eleven districts of seven provinces in Mongolia.A 3D bioprinted pseudo-bone drug delivery scaffold was fabricated to display matrix strength, matrix resilience, as well as porous morphology of healthy human bone. Computer-aided design (CAD) software was employed for developing the 3D bioprinted scaffold. Further optimization of the scaffold was undertaken using MATLAB® software and artificial neural networks (ANN). Polymers employed for formulating the 3D scaffold comprised of polypropylene fumarate (PPF), free radical polymerized polyethylene glycol- polycaprolactone (PEG-PCL-PEG), and pluronic (PF127). Simvastatin was incorporated into the 3D bioprinted scaffolds to further promote bone healing and repair properties. The 3D bioprinted scaffold was characterized for its chemical, morphological, mechanical, and in vitro release kinetics for evaluation of its behavior for application as an implantable scaffold at the site of bone fracture. The ANN-optimized 3D bioprinted scaffold displayed significant properties as a controlled release platform, demonstrating drug release over 20 days. The 3D bioprinted scaffold further displayed formation as a pseudo-bone matrix, using a human clavicle bone model, induced with a butterfly fracture. The strength of the pseudo-bone matrix, evaluated for its matrix hardness (MH) and matrix resilience (MR), was evaluated to be as strong as original bone, having a 99% MH and 98% MR property, to healthy human clavicle bones.This paper studies the use of zinc oxide nanoparticles (ZnO-NPs) synthesized using an extract of Convolvulus arvensis leaf and expired ZnCl2, as efficient inhibitors of carbon steel corrosion in a 1 M HCl solution. The synthesized ZnO-NPs were characterized by Fourier-transform infrared (FTIR) and UV-Vis spectroscopy analysis. The corrosion inhibition of carbon steel in 1 M HCl was also investigated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and the determination of weight loss. The results show that the efficiency of the prevention increased when the concentration of ZnO-NPs was increased to 91%, and that the inhibition efficiency was still high (more than 89%) despite decreasing at high temperatures, acting as a mixed-type inhibitor. A sample of carbon steel with a protective layer of inhibitor on top was observed during immersion in 1 M HCl for 20 h; an increase in the charge transfer resistance (Rct) and stability of the inhibitor could be observed after 6 h. Adsorption isotherm models demonstrated that the inhibitor adsorption mechanism on the carbon steel surface followed Langmuir rather than Freundlich and Temkin behaviors. The thermodynamic parameters showed that the adsorption process is one of mixed, spontaneous, and exothermic adsorption. The results illustrate that the ZnO-NPs were a strong inhibitor of carbon steel corrosion in acid medium. The results of scanning electron microscopy (SEM) images showed that the ZnO-NPs formed a good protective film on the carbon steel surface.In this paper, we report the plasma-enhanced atomic layer deposition (PEALD) of TiO2 and TiO2/Al2O3 nanolaminate films on p-Si(100) to fabricate metal-oxide-semiconductor (MOS) capacitors. In the PEALD process, we used titanium tetraisopropoxide (TTIP) as a titanium precursor, trimethyl aluminum (TMA) as an aluminum precursor and O2 plasma as an oxidant, keeping the process temperature at 250 °C. The effects of PEALD process parameters, such as RF power, substrate exposure mode (direct or remote plasma exposure) and Al2O3 partial-monolayer insertion (generating a nanolaminate structure) on the physical and chemical properties of the TiO2 films were investigated by Rutherford backscattering spectroscopy (RBS), Raman spectroscopy, grazing incidence X-ray diffraction (GIXRD), and field emission scanning electron microscopy (FESEM) techniques. The MOS capacitor structures were fabricated by evaporation of Al gates through mechanical mask on PEALD TiO2 thin film, followed by evaporation of an Al layer on the back side of the Si substrate.