Activity

  • Lopez Monroe posted an update 1 week, 4 days ago

    Consumption of cereals and cereal-based products represents 47% of the total food energy intake in Cape Verde. However, cereals also contribute to dietary exposure to metals that may pose a risk. Strengthening food security and providing nutritional information is a high-priority challenge for the Cape Verde government. In this study, toxic metal content (Cr, Ni, Sr, Al, Cd, and Pb) is determined in 126 samples of cereals and derivatives (rice, corn, wheat, corn flour, wheat flour, corn gofio) consumed in Cape Verde. Wheat flour samples stand out, with the highest Sr (1.60 mg/kg), Ni (0.25 mg/kg) and Cr (0.13 mg/kg) levels. While the consumption of 100 g/day of wheat would contribute to 13.2% of the tolerable daily intake (TDI) of Ni, a consumption of 100 g/day of wheat flour would contribute to 8.18% of the tolerable weekly intake (TWI) of Cd. Results show relevant Al levels (1.17-13.4 mg/kg), with the highest level observed in corn gofio. The mean Pb average content in cereals is 0.03-0.08 mg/kg, with the highest level observed in corn gofio. Al and Pb levels are lower in cereals without husks. Without being a health risk, the consumption of 100 g/day of wheat contributes to 17.5% of the European benchmark doses lower confidence limit (BMDL) of Pb for nephrotoxic effects; the consumption of 100 g/day of corn gofio provides an intake of 1.34 mg Al/day (13.7% of the TWI) and 8 µg Pb/day (20% of the BMDL for nephrotoxic effects). A strategy to minimize the dietary exposure of the Cape Verdean population to toxic metals from cereals should consider the continuous monitoring of imported cereals on arrival in Cape Verde, the assessment of the population’s total diet exposure to toxic metals and educational campaigns.

    Lung cancer is the leading cause of cancer death. SIPA1 is a mitogen induced GTPase activating protein (GAP) and may hamper cell cycle progression. SIPA1 has been shown to be involved in MET signaling and may contribute to tight junction (TJ) function and cancer metastasis.

    Human lung tumour cohorts were analyzed. In vitro cell function assays were performed after knock down of SIPA1 in lung cancer cells with/without treatment. Quantitative polymerase chain reaction (qPCR) and western blotting were performed to analyze expression of HGF (hepatocyte growth factor), MET, and their downstream markers. Immunohistochemistry (IHC) and immunofluorescence (IFC) staining were performed.

    Higher expression of SIPA1 in lung tumours was associated with a poorer prognosis. selleck products Knockdown of SIPA1 decreased invasiveness and proliferation of in vitro cell lines, and the SIPA1 knockdown cells demonstrated leaky barriers. Knockdown of SIPA1 decreased tight junction-based barrier function by downregulating MET at the protein but not the transcript level, through silencing of Grb2, SOCS, and PKCμ (Protein kinase Cµ), reducing the internalization and recycling of MET. Elevated levels of SIPA1 protein are correlated with receptor tyrosine kinases (RTKs), especially HGF/MET and TJs. The regulation of HGF on barrier function and invasion required the presence of SIPA1.

    SIPA1 plays an essential role in lung tumourigenesis and metastasis. SIPA1 may be a diagnostic and prognostic predictive biomarker. SIPA1 may also be a potential therapeutic target for non-small cell lung cancer (NSCLC) patients with aberrant MET expression and drug resistance.

    SIPA1 plays an essential role in lung tumourigenesis and metastasis. SIPA1 may be a diagnostic and prognostic predictive biomarker. SIPA1 may also be a potential therapeutic target for non-small cell lung cancer (NSCLC) patients with aberrant MET expression and drug resistance.Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.The aim of this study was twofold (1) to describe the weekly acute workload (wAW), chronic workload (wCW), acute/chronic workload ratio (wACWR), training monotony (wTM), and strain (wTS) across the preparation season (PS), and (2) to analyze the variations of wAW, wCW, wACWR, wTM, and training strain (wTS) between periods of PS (early-, mid-, and end). Ten elite young wrestlers were monitored daily during the 32 weeks of the season. Internal loads were monitored using session rating of perceived exertion, and weekly workload measures of wACWR, wTM, and wTS were also calculated. Results revealed that the greatest differences were found between early- and mid-PS for wAW (p = 0.004, g = 0.34), wCW (p = 0.002, g = 0.90), wTM (p = 0.005, g = 0.39), and wTS (p = 0.009, g = -1.1), respectively. The wACWR showed significant differences between early- and end-PS (p ≤ 0.001, g = -0.30). We concluded that wAW, wCW, and wTM are slightly lower during the first weeks of the PS. The wTM remained relatively high during the entire season, while wAW and wCW remained balanced throughout the PS.