Activity

  • Duncan McGrath posted an update 2 weeks ago

    Plasma-wakefield accelerators driven by intense particle beams promise to significantly reduce the size of future high-energy facilities. Such applications require particle beams with a well-controlled energy spectrum, which necessitates detailed tailoring of the plasma wakefield. Precise measurements of the effective wakefield structure are therefore essential for optimising the acceleration process. Here we propose and demonstrate such a measurement technique that enables femtosecond-level (15 fs) sampling of longitudinal electric fields of order gigavolts-per-meter (0.8 GV m-1). This method-based on energy collimation of the incoming bunch-made it possible to investigate the effect of beam and plasma parameters on the beam-loaded longitudinally integrated plasma wakefield, showing good agreement with particle-in-cell simulations. These results open the door to high-quality operation of future plasma accelerators through precise control of the acceleration process.The cumulative of genes carrying mutations is vital for the establishment and development of cancer. However, this driver gene exploring research line has selected and used types of tools and models of analysis unsystematically and discretely. Also, the previous studies may have neglected low-frequency drivers and seldom predicted subgroup specificities of identified driver genes. In this study, we presented an improved driver gene identification and analysis pipeline that comprises the four most widely focused analyses for driver genes enrichment analysis, clinical feature association with expression profiles of identified driver genes as well as with their functional modules, and patient stratification by existing advanced computational tools integrating multi-omics data. The improved pipeline’s general usability was demonstrated straightforwardly for breast cancer, validated by some independent databases. Accordingly, 31 validated driver genes, including four novel ones, were discovered. Subsequently, we detected cancer-related significantly enriched gene ontology terms and pathways, probable drug targets, two co-expressed modules associated significantly with several clinical features, such as number of positive lymph nodes, Nottingham prognostic index, and tumor stage, and two biologically distinct groups of BRCA patients. Data and source code of the case study can be downloaded at https//github.com/hauldhut/drivergene .Experiments were conducted to understand environmental effects on efficacy of herbicides used to control goosegrass (Eleusine indica L. Gaertn.). Herbicides were applied to goosegrass maintained at soil moisture contents (VMC) of  20%. Herbicides included fenoxaprop-p-ethyl (140 g ha-1), topramezone (25 g ha-1), foramsulfuron (44 g ha-1), 2,4-D + dicamba + MCPP + carfentrazone (860 + 80 + 270 + 28 g ha-1), and thiencarbazone-methyl + foramsulfuron + halosulfuron-methyl (22 + 45 + 69 g ha-1). Goosegrass control increased as VMC increased. Vapor pressure deficit (VPD) and air temperature were manipulated to determine effects of evaporative demand on foramsulfuron. Effects of soil drying were also studied following foramsulfuron application. Reductions in transpiration rate (TR) and leaf area were greatest with foramsulfuron applications to goosegrass in silt-loam under high evaporative demand (3 kPa VPD, 38 °C). Foramsulfuron had no effect on goosegrass in silica-sand regardless of evaporative demand. TR dropped to 0.2 mmh-1 within eight days after application to goosegrass in silt-loam compared to 18 days in silica-sand. Overall, foramsulfuron efficacy on goosegrass was maximized under conditions of high soil moisture and evaporative demand, and may be reduced in sandy soils that hold less water.A Correction to this paper has been published https//doi.org/10.1038/s41467-020-20105-3.The Qin Mountains region is one of the most important climatic boundaries that divide the North and South of China. This study investigates vegetation covers changes across the Qin Mountains region over the past three decades based on the Landsat-derived Normalized Difference Vegetation Index (NDVI), which were extracted from the Google Earth Engine (GEE). Our results show that the NDVI across the Qin Mountains have increased from 0.624 to 0.776 with annual change rates of 0.0053/a over the past 32 years. Besides, its abrupt point occurred in 2006 and the change rates after this point increased by 0.0094/a (R2 = 0.8159, p  less then  0.01) (2006-2018), which is higher than that in 1987-1999 and 1999-2006. The mean NDVI have changed in different elevation ranges. The NDVI in the areas below 3300 m increased, such increased is especially most obviously in the cropland. Most of the forest and grassland locate above 3300 m with higher increased rate. Before 2006, the temperature and reference evapotranspiration (PET) were the important driven factors of NDVI change below 3300 m. After afforestation, human activities become important factors that influenced NDVI changes in the low elevation area, but hydro-climatic factors still play an important role in NDVI increase in the higher elevations area.Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by vesicle-based carriers. The proteomes of carriers destined for many organelles are ill-defined because the vesicular intermediates are transient, low-abundance and difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi network (TGN). Forskolin Microtubule Associat inhibitor The golgin coiled-coil proteins golgin-97 and GCC88, shown previously to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria and the content of the subsequently re-routed vesicles was determined by organelle proteomics. Our findings reveal 45 integral and 51 peripheral membrane proteins re-routed by golgin-97, evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes specific to individual golgins. These results illustrate a general strategy for analysing intracellular sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.