-
Sheppard Daley posted an update 1 week, 5 days ago
Inflammation-mediated tissue injury is the major mechanism involved in the pathogenesis of coronavirus disease 2019 (COVID-2019), caused by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Statins have well-established anti-inflammatory, anti-thrombotic and immuno-modulatory effects. They may also influence viral entry into human cells.
A literature search was done using PubMed and Google search engines to prepare a narrative review on this topic.
Statins interact with several different signaling pathways to exert their anti-inflammatory and vasculoprotective effects. They also variably affect cholesterol content of cell membranes and interfere with certain coronavirus enzymes involved in receptor-binding. Both these actions may influence SARS-CoV-2 entry into human cells. Statins also upregulate expression of angiotensin-converting enzyme 2 receptors on cell surfaces which may promote viral entry into the cells but at the same time, may minimize tissue injury through production of angiotensin [1-7]. The net impact of these different effects on COVID-19 pathogenesis is not clear. However, the retrospective clinical studies have shown that statin use is potentially associated with lower risk of developing severe illness and mortality and a faster time to recovery in patients with COVID-19.
Early observations suggest beneficial effect of statin use on the clinical outcomes in COVID-19. Prospective randomized studies as well as well-designed laboratory studies are required to confirm these observations and to elucidate the mechanisms of such benefits, if proven.
Early observations suggest beneficial effect of statin use on the clinical outcomes in COVID-19. Prospective randomized studies as well as well-designed laboratory studies are required to confirm these observations and to elucidate the mechanisms of such benefits, if proven.The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles sportswear, children’s bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. 2-Bromohexadecanoic cell line Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.Benzene is a ubiquitous, occupational, and environmental hematotoxic and leukemogen. Damage to hematopoietic stem cells (HSCs) induced by benzene and its metabolites is a key event in bone marrow (BM) depression and leukemogenesis. There are no reports on transcriptome profiles of HSCs following benzene exposure. Here, Smart-seq2 single-cell transcriptome sequencing was used to detect transcriptomic alternations in BM HSCs and peripheral blood HSCs (PBSCs) in male C57B/6 mice exposed to benzene. We found that benzene caused hematotoxicity which was confirmed by routine blood test, pathological examination, and HSCs percentage analysis. A total of 1514 differentially expressed genes (DEGs) in BM HSCs and 1703 DEGs in PBSCs were screened after treatment with benzene. Weighted gene correlation network analysis revealed that pathways in cancer, transcriptional misregulation in cancer, and hematopoietic cell lineage are vital pathways involved in benzene-induced toxicity in BM HSCs, whereas hematopoietic cell lineage and leukocyte transendothelial migration are critical pathways in PBSCs. Of note, there were 164 common DEGs in both HSCs, out of which 53 genes were co-regulated in both types of HSCs. Subsequent pathway analysis of these 53 genes indicated that the most relevant pathways involved neutrophil degranulation and CD93 localized in the core of the network of the 53 genes, which are known to regulate leukemia stem cell self-renewal and quiescence. Our results could enhance our understanding of HSC responses to benzene, facilitate the identification of potential molecular biomarkers and future studies on its mechanism of toxicity toward HSCs.Pesticides have been used in the field of agriculture ever since their role in protection of crops from pests which include four different categories namely insects, mites, rodents and animals has been identified. Organophosphate pesticides are one of the most extensively applied insecticides in the field of agriculture such that around 40% of all the pesticides that are produced and used commercially belong to this category. The main toxicological effect of these pesticides when exposed to a living being encompasses the irremediable inhibition of the acetylcholinesterase (AChE) enzyme which is involved in the neurotransmission of signals and hence its inhibition causes impairment of the respiratory tract and neuromuscular transmission. Apart from being used as a pesticide, organophosphates have also been applied as herbicides to some extent. The residues of these highly toxic chemicals have found route into the underground water system by seeping into the ground, in rivers where the agricultural run off water is disposed, and in the air when sprayed on the crops hence posing a threat to all the living strata exposed to these chemicals in various ways which are discussed further. Many significant studies have been carried out in order to evaluate the health risks associated with these pesticides which commonly include acute neurological disorders. This review emphasizes on the toxicological effects of organophosphate pesticides and the recent methods of detection that are used to identify trace amounts of organophosphate pesticides along with strategies which are used for their degradation.