Activity

  • Wu Hoff posted an update 3 hours, 17 minutes ago

    Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for (a) CO2 fixation, (b) high value-added product formation, (c) sustainable energy sources via deep oxidation, and (d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.I describe some of the science that I have been involved in during the last 60 years and the changes in equipment that made it possible. Starting with an interest in spectroscopy and measurement of NMR parameters, I moved to work on theoretical aspects of spin systems and infrared and Raman line shapes. This morphed into using the new technique of computer simulation to study such problems. The last half of my working life has concentrated on the application of computer simulation to a number of problems culminating in pioneering investigations of the behavior of ionic liquids.In traditional orthognathic surgery, the dental splint technique is typically used to assist surgeons to reposition the maxilla or mandible. However, the design and manufacturing of dental splints is time-consuming and labor-intensive, and the templates may not applicable for some complicated cases due to the anatomic intricacies in the maxillofacial region. During recent years, computer-aided navigation technology has been widely used in oral and maxillofacial surgery. However, due to the limitation of current calibration and registration methods, it has been rarely reported for the motion tracking of intraoperative reposition for the loosed bone graft. In this study, a novel surgical navigation system was developed. With the use of this system, not only the surgical saw can be tracked in real-time, but also the loosed bone graft can be navigated under the guidance of the interactive 2D and 3D views until it is aligned with the preoperatively planned position. selleck products The phantom experiments validated the feasibility of our surgical navigation system, and the mean error of image-guided reposition was 1.03 ± 0.10 mm, which was significantly more accurate than the mean error of 5.57 ± 1.40 mm based on the non-navigated methods.The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http//www.annualreviews.org/page/journal/pubdates for revised estimates.This review deals with two important concepts-protein intrinsic disorder and proteinaceous membrane-less organelles (PMLOs). The past 20 years have seen an upsurge of scientific interest in these phenomena. However, neither are new discoveries made in this century, but instead are timely reincarnations of old ideas that were mostly ignored by the scientific community for a long time. Merging these concepts in the form of the intrinsic disorder-based biological liquid-liquid phase separation provides a basis for understanding the molecular mechanisms of PMLO biogenesis.Two-dimensional (2D) tungsten disulfide (WS2), tungsten diselenide (WSe2), and tungsten ditelluride (WTe2) draw increasing attention due to their attractive properties deriving from the heavy tungsten and chalcogenide atoms, but their mechanical properties are still mostly unknown. Here, we determine the intrinsic and air-aged mechanical properties of mono-, bi-, and trilayer (1-3L) WS2, WSe2, and WTe2 using a complementary suite of experiments and theoretical calculations. High-quality 1L WS2 has the highest Young’s modulus (302.4 ± 24.1 GPa) and strength (47.0 ± 8.6 GPa) of the entire family, overpassing those of 1L WSe2 (258.6 ± 38.3 and 38.0 ± 6.0 GPa, respectively) and WTe2 (149.1 ± 9.4 and 6.4 ± 3.3 GPa, respectively). However, the elasticity and strength of WS2 decrease most dramatically with increased thickness among the three materials. We interpret the phenomenon by the different tendencies for interlayer sliding in an equilibrium state and under in-plane strain and out-of-plane compression conditions in the indentation process, revealed by the finite element method and density functional theory calculations including van der Waals interactions. We also demonstrate that the mechanical properties of the high-quality 1-3L WS2 and WSe2 are largely stable in air for up to 20 weeks. Intriguingly, the 1-3L WSe2 shows increased modulus and strength values with aging in the air. This is ascribed to oxygen doping, which reinforces the structure. The present study will facilitate the design and use of 2D tungsten dichalcogenides in applications such as strain engineering and flexible field-effect transistors.Many applications of responsive microgels rely on the fast adaptation of the polymer network. However, the underlying dynamics of the de-/swelling process of the gels have not been fully understood. In the present work, we focus on the collapse kinetics of poly-N-isopropylacrylamide (pNIPAM) microgels due to cononsolvency. Cononsolvency means that either of the pure solvents, e.g., pure water or pure methanol, act as a so-called good solvent, leading to a swollen state of the polymer network. However, in mixtures of water and methanol, the previously swollen network undergoes a drastic volume loss. To further elucidate the cononsolvency transition, pNIPAM microgels with diameters between 20 and 110 μm were synthesized by microfluidics. To follow the dynamics, pure water was suddenly exchanged with an unfavorable mixture of 20 mol% methanol (solvent-jump) within a microfluidic channel. The dynamic response of the microgels was investigated by optical and fluorescence microscopy and Raman microspectroscopy. The experimental data provide unique and detailed insight into the size-dependent kinetics of the volume phase transition due to cononsolvency.