-
Hesselberg Vincent posted an update 4 months, 3 weeks ago
An mRNA-miRNA-lncRNA network in TNBC was constructed. Thus, we successfully established a novel mRNA-miRNA-lncRNA regulatory network, each component of which is prognostic for TNBC.Tumour protein translationally controlled 1 (TPT1) antisense RNA 1 (TPT1-AS1) is known to be involved in the development and metastasis of cervical and ovarian cancers; however, its biological role in colorectal cancer (CRC) remains unknown. This study aimed to determine the function and mechanism of action of TPT1-AS1 in the progression and metastasis of CRC. Elevated TPT1-AS1 levels were observed in CRC tissues. Furthermore, the high expression levels were found to be correlated with unfavourable clinicopathological characteristics in CRC. Cell function experiments demonstrated that TPT1-AS1 depletion impeded cell proliferation, migration and invasion and enhanced cell adhesion; it also attenuated tumorigenesis and metastasis in vivo. Additionally, TPT1-AS1 was predominately located in the nuclei of the cells and could upregulate the expression of TPT1 by recruiting mixed lineage leukaemia protein-1 (MLL1), which increased the trimethylation of H3K4 me3 in the TPT1 promoter region and subsequently activated FAK and JAK-STAT3 signalling cascades. The inhibition of FAK activation by PF573228 significantly attenuated the oncogenic effect of TPT1-AS1. These findings indicated that TPT1-AS1 promoted tumour progression and metastasis in CRC by upregulating TPT1 levels and activating the FAK and JAK-STAT3 signalling pathways. learn more Thus, TPT1-AS1 may be considered as a potential therapeutic target for CRC.A recent study has reported that tsukushi (TSKU) may be related to the development of lung cancer. However, few studies focused on if TSKU associated with the prognosis and immune infiltration cells in non-small cell lung cancer (NSCLC). The effect of TSKU expression on prognosis with NSCLC was analyzed in the PrognoScan database and validated in The Cancer Genome Atlas. The composition of tumor infiltrating cells was quantified by methylation and expression data. We combined levels of tumor infiltrating cells with TSKU to evaluate the survival of patients. The analysis of a cohort (GSE31210, N=204) of lung cancer patients demonstrated that high TSKU expression was strongly associated with poor overall survival (P =1.90E-05). The combination of high TSKU expression and low infiltration B cells identified a subtype of patients with poor survival in NSCLC. Besides, the proportion of B cells in NSCLC patients with TSKU hypermethylation were higher than those patients with TSKU hypomethylation (P less then 0.001). Overall, high TSKU expression combined with low infiltration of B cells may associate with a poor prognosis of NSCLC patients. TSKU might be a potential prognostic biomarker involved in tumor immune infiltration in NSCLC.In this study, we found that ALKBH5, a key component of the N6-methyladenosine (m6A) methyltransferase complex, was significantly elevated in uveal melanoma (UM) cell lines and that ALKBH5 downregulation inhibited tumor growth in vivo. High ALKBH5 expression predicted worse outcome in patients with UM. EP300-induced H3K27 acetylation activation increased ALKBH5 expression. Downregulation of ALKBH5 inhibited UM cell proliferation, migration, and invasion and increased apoptosis in vitro. Besides, ALKBH5 may promote UM metastasis by inducing epithelial-to-mesenchymal transition (EMT) via demethylation of FOXM1 mRNA, which increases its expression and stability. In sum, our study indicates that AKLBH5-induced m6A demethylation of FOXM1 mRNA promotes UM progression. Therefore, AKLBH5 is a potential prognostic biomarker and therapeutic target in UM.Colon adenocarcinoma (COAD) is one of the most common gastrointestinal malignant tumors and is characterized by a high mortality rate. Here, we integrated whole-exome and RNA sequencing data from The Cancer Genome Atlas and investigated the mutational spectra of COAD-overexpressed genes to define clinically relevant diagnostic/prognostic signatures and to unmask functional relationships with both tumor-infiltrating immune cells and regulatory miRNAs. We identified 24 recurrently mutated genes (frequency > 5%) encoding putative COAD-specific neoantigens. Five of them (NEB, DNAH2, ABCA12, CENPF and CELSR1) had not been previously reported as COAD biomarkers. Through machine learning-based feature selection, four early-stage-related (COL11A1, TG, SOX9, and DNAH2) and four late-stage-related (COL11A1, SOX9, TG and BRCA2) candidate neoantigen-encoding genes were selected as diagnostic signatures. They respectively showed 100% and 97% accuracy in predicting early- and late-stage patients, and an 8-gene signature had excellent prognostic performance predicting disease-free survival (DFS) in COAD patients. We also found significant correlations between the 24 candidate neoantigen genes and the abundance and/or activation status of 22 tumor-infiltrating immune cell types and 56 regulatory miRNAs. Our novel neoantigen-based signatures may improve diagnostic and prognostic accuracy and help design targeted immunotherapies for COAD treatment.The incidence of severe manifestations of COVID-19 increases with age with older patients showing the highest mortality, suggesting that molecular pathways underlying aging contribute to the severity of COVID-19. One mechanism of aging is the progressive shortening of telomeres, which are protective structures at chromosome ends. Critically short telomeres impair the regenerative capacity of tissues and trigger loss of tissue homeostasis and disease. The SARS-CoV-2 virus infects many different cell types, forcing cell turn-over and regeneration to maintain tissue homeostasis. We hypothesize that presence of short telomeres in older patients limits the tissue response to SARS-CoV-2 infection. We measure telomere length in peripheral blood lymphocytes COVID-19 patients with ages between 29 and 85 years-old. We find that shorter telomeres are associated to increased severity of the disease. Individuals within the lower percentiles of telomere length and higher percentiles of short telomeres have higher risk of developing severe COVID-19 pathologies.