-
Iqbal Torp posted an update 1 week, 6 days ago
Recovering deep phylogeny is challenging with animal mitochondrial genes because of their rapid evolution. Codon degeneration decreases the phylogenetic noise and bias by aiming to achieve two objectives (1) alleviate the bias associated with nucleotide composition, which may lead to homoplasy and long-branch attraction, and (2) reduce differences in the phylogenetic results between nucleotide-based and amino acid (AA)-based analyses. The discrepancy between nucleotide-based analysis and AA-based analysis is partially caused by some synonymous codons that differ more from each other at the nucleotide level than from some nonsynonymous codons, e.g., Leu codon TTR in the standard genetic code is more similar to Phe codon TTY than to synonymous CTN codons. Thus, nucleotide similarity conflicts with AA similarity. There are many such examples involving other codon families in various mitochondrial genetic codes. Proper codon degeneration will make synonymous codons more similar to each other at the nucleotide level than they are to nonsynonymous codons. Here, I illustrate a “principled” codon degeneration method that achieves these objectives. The method was applied to resolving the mammalian basal lineage and phylogenetic position of rheas among ratites. The codon degeneration method was implemented in the user-friendly and freely available DAMBE software for all known genetic codes (genetic codes 1 to 33).Delivering active pharmaceutical agents to disease sites using soft polymeric nanoparticles continues to be a topical area of research. It is becoming increasingly evident that the composition of amphiphilic macromolecules plays a significant role in developing efficient nanoformulations. Branched architectures with asymmetric polymeric arms emanating from a central core junction have provided a pivotal venue to tailor their key parameters. The build-up of miktoarm stars offers vast polymer arm tunability, aiding in the development of macromolecules with adjustable properties, and allows facile inclusion of endogenous stimulus-responsive entities. Miktoarm star-based micelles have been demonstrated to exhibit denser coronae, very low critical micelle concentrations, high drug loading contents, and sustained drug release profiles. With significant advances in chemical methodologies, synthetic articulation of miktoarm polymer architecture, and determination of their structure-property relationships, are now becoming streamlined. This is helping advance their implementation into formulating efficient therapeutic interventions. This review brings into focus the important discoveries in the syntheses of miktoarm stars of varied compositions, their aqueous self-assembly, and contributions their formulations are making in advancing the field of drug delivery.Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 μM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.This study used the Korean National Health Insurance (NHI) claims database from 2011 to 2017 to estimate the incidence and the incidence-based cost of cervical cancer and carcinoma in situ of cervix uteri (CIS) in Korea. The primary outcome was the direct medical cost per patient not diagnosed with cervical cancer (C53) or CIS (D06) 2 years prior to the index date in the first year after diagnosis. A regression analysis was conducted to adjust for relevant covariates. The incidence of cervical cancer tended to decrease from 2013 to 2016, while that of CIS increased. In particular, the incidence rate of CIS in women in their 20 s and 30 s increased by 56.8% and 28.4%, respectively, from 2013 to 2016. The incidence-based cost of cervical cancer and CIS was USD 13,058 and USD 2695 in 2016, respectively, which increased from 2013. Multivariate regression analysis suggested that age was the most influential variable of the cost in both patient groups, and the cost was highest in those aged over 60, i.e., the medical cost was significantly lower in younger women than their older counterparts. These findings suggest that targeting younger women in cervical cancer prevention is a reasonable option from both economic and public health perspectives.
Despite rapid economic development, child stunting remains a persistent problem in China. Stunting prevalence varies greatly across geographical regions and wealth groups. To address child undernutrition, the Ying Yang Bao (YYB) nutritional package has been piloted in China since 2001.
We aimed to evaluate the distributional impact of a hypothetical rollout of the YYB nutritional package on child stunting across provinces and wealth groups in China, with a specific focus on equity.
We used data from China Family Panel Studies and built on extended cost-effectiveness analysis methods. #link# We estimated the distributional impact of a 12-month YYB program targeting children aged 6-36 months across 25 provinces and two wealth groups along three dimensions the cost of the YYB program; the number of child stunting cases averted by YYB; and the cost per stunting case averted. Children in each province were divided into poverty and non-poverty groups based on the international poverty line of $5.50 per day. We also n package that brings substantial health benefits to poor and marginalized Chinese children, but with large variations in value for money across provinces and wealth groups. This analysis points to the need for prioritization across provinces and a targeted approach for YYB rollout in China.Additive manufacturing (AM) is the term for a number of processes for joining materials to build physical components from a digital 3D model. AM has multiple advantages over other construction techniques, such as freeform, customization, and waste reduction. However, AM components have been evaluated by destructive and non-destructive testing and have shown mechanical issues, such as reduced resistance, anisotropy and voids. link2 The build direction affects the mechanical properties of the built part, including voids of different characteristics. The aim of this work is an extended analysis of void shape by means of X-ray computed tomography (CT) applied to fused deposition modeling (FDM) samples. Furthermore, a relation between the tensile mechanical properties and digital void measurements is established. The results of this work demonstrate that void characteristics such as quantity, size, sphericity and compactness show no obvious variations between the samples. However, the angle between the main void axis and the mechanical load axis α shows a relation for FDM components when its mean value μ(α) is around 80 (degrees) the yield strength and Young’s modulus are reduced. These results lead to the formulation of a novel criterion that predicts the mechanical behavior of AM components.Lithography-free black metals composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and the cost reduction of devices based on such structures. We demonstrate multi-layer black metal layered structures with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterization of thin SiO2 and Si films sandwiched between two Au layers by way of experimental electromagnetic radiation absorption and thermal radiation emission measurements as well as finite difference time domain (FDTD) numerical simulations is presented. Comparison of experimental and simulation data derived optical properties of multi-layer black metals provide guidelines for absorber/emitter structure design and potential applications. In addition, relatively simple lithography-free multi-layer structures are shown to exhibit absorber/emitter performance that is on par with what is reported in the literature for considerably more elaborate nano/micro-scale patterned metasurfaces.Incorporating various industrial waste materials into concrete has recently gained attention for sustainable construction. This paper, for the first time, studies the effects of silica stone waste (SSW) powder on concrete. The cement of concrete was replaced with 5, 10, 15, and 20% of the SSW powder. The mechanical properties of concrete, such as compressive and tensile strength, were studied. Furthermore, the microstructure of concrete was studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier transformed infrared spectroscopy (FTIR), and X-Ray diffraction (XRD) tests. Compressive and tensile strength of samples with 5% SSW powder was improved up to 18.8% and 10.46%, respectively. As can be observed in the SEM images, a reduced number of pores and higher density in the matrix can explain the better compressive strength of samples with 5% SSW powder.The main aim of the study was to investigate the chemical composition, antioxidant, antimicrobial, and antibiofilm activity of Citrus aurantium essential oil (CAEO). The biofilm profile of Stenotrophonomonas maltophilia and Bacillus subtilis were assessed using the mass spectrometry MALDI-TOF MS Biotyper and the antibiofilm activity of Citrus aurantium (CAEO) was studied on wood and glass surfaces. link3 A semi-quantitative composition using a modified version was applied for the CAEO characterization. The antioxidant activity of CAEO was determined using the DPPH method. The antimicrobial activity was analyzed by disc diffusion for two biofilm producing bacteria, while the vapor phase was used for three penicillia. The antibiofilm activity was observed with the agar microdilution method. The molecular differences of biofilm formation on different days were analyzed, and the genetic similarity was studied with dendrograms constructed from MSP spectra to illustrate the grouping profiles of S. maltophilia and B. subtilis. A differentiated branch was obtained for early growth variants of S. maltophilia for planktonic cells and all experimental groups. BRM/BRG1 ATP Inhibitor-1 in vitro can be reported for the grouping pattern of B. subtilis preferentially when comparing to the media matrix, but without clear differences among variants. Furthermore, the minimum inhibitory doses of the CAEO were investigated against microscopic fungi. The results showed that CAEO was most active against Penicillium crustosum, in the vapor phase, on bread and carrot in situ.