Activity

  • Currin Dalby posted an update 6 days, 20 hours ago

    Zinnia elegans, common zinnia, is an annual plant with highly ornamental values. It is widely planted in many nurseries, city parks, universities and home gardens in China. From August to October 2020, powdery mildew-like signs and symptoms were observed on leaves of Z. elegans growing on the campus of Henan Normal University, Henan Province, China. White powdery colonies in circular- or irregularly shaped-lesions were abundant on both surfaces of leaves and covered up to 95 % of the leaf area. Any infected leaves were chlorotic, deformed or senescence. More than 70 % of the monitored Z. elegans plants showed these signs and symptoms. Conidiophores (n = 20) were 100 to 200 × 9 to 13 μm and composed of foot cells, followed by straight cells and conidia. Mycelial appressoria were single and nipple-shaped. The oval-shaped conidia (n = 30) were 22 to 36 × 12 to 18 μm, with a length/width ratio of 1.4 to 2.7, and produced germ tubes from the polar ends of the spore. No chasmothecia were found. Based on these morphity, 60 %; light/dark, 16 h/8 h; temperature, 18 ℃). Eleven- to twelve-days post-inoculation, powdery mildew signs were conspicuous on inoculated plants, while control plants remained healthy. Similar results were obtained by conducting two repeated pathogenicity assays. Thus, based on the morphological characteristics and molecular analysis, the pathogen was identified and confirmed as G. cichoracearum. This pathogen has been reported on Z. elegans in India, Israel, Jordan, Korea, Nepal, Sri Lanka, Switzerland, and Turkey (Farr and Rossman 2020). To our best knowledge, this is the first report of G. cichoracearum on Z. elegans in China. The sudden outbreak of powdery mildew caused by G. cichoracearum on Z. Brequinar in vitro elegans may adversely impact the plant health and ornamental value in China. Therefore, the confirmation of G. cichoracearum infecting Z. elegans expands the understanding of this pathogen and provides the fundamental knowledge for future powdery mildew control.Mango wilt has been a serious constraint in mango (Mangifera indica L.) production in several countries including India (Shukla et al. 2018). Although, several fungal pathogens have been reported associated with the disease, species of Ceratocystis, Verticillium and Lasiodiplodia have been found predominantly responsible for the wilt (Shukla et al. 2018). A twenty-seven-year old mango tree cv. Dashehari at Rehmankhera, Lucknow, Uttar Pradesh, India suffered sudden wilt (Fig. 1A) during February 2020. Though, symptoms were similar to Ceratocystis wilt, no gummosis was observed on trunk or branches which occurred in the majority of Ceratocystis fimbriata infected trees. The infected roots of the wilted tree exhibited dark brown to black discoloration in woody portions (Fig. 1B). Severely affected roots were completely rotten. Similar symptoms of root infection were observed in an additional 16 declining trees within an orchard of 120 trees total (Fig. 2). The infected hard wood samples from live roots of 16 decout, if found widespread.Cabbage (Brassica oleracea var. capitata L.) is widely cultivated in China and be of important economic value. In October 2019, all the plants of cabbage inbred line ‘2358’ cultivated in greenhouses of the Chinese Academy of Agricultural Sciences (Beijing) were showing symptoms of leaf wilt. It usually took two weeks for the leaves to get completed wilted and the plants gradually died. It was approximately 550 plants affected, and 30 plants were collected and processed as samples. Symptomatic leaves were cut into small pieces (5×5 mm), surface sterilized with 75% ethanol for 30 s, and then sterilized with 8% NaClO for 3 mins, rinsed three times in sterile distilled water, plated on complete medium (CM 3g Casein Enzymatic Hydrolysate + 3g Casein Acid Hydrolysate + 6g Yeast Extract+10g Sucrose + 15g Agar + 1L dH2O) and incubated at 27℃ for 6 days. Subsequently, the purified culture was obtained by tissue isolation and single-spored on CM. The colony on CM was up to about 50mm and 70mm in diameter after 4 and 7 ts were obtained. Re-isolation of C. globosum and inoculation of the host fulfiled Koch’s postulates. C. globosum has been reported previously to occur on many horticulture plants such as Punica granatum (Guo et al. 2015) and Cannabis sativa (Chaffin et al. 2020); but no brassica species has been reported so far as susceptible to C. globosum. In this sense, this is the first report of leaf blight caused by C. globosum on cabbage in China, in greenhouse condition.The biocontrol efficacy of Bacillus amyloliquefaciens FS6 against seedling diseases and gray mold of ginseng, as well as application techniques were evaluated in a series of field trials. FS6 fermentation broth showed a strong antagonistic effect against the ginseng fungal pathogens, and the inhibition rates on mycelial growth and spore germination were 84 to 88% and 71 to 72%, respectively. Field evaluation showed that combination of seed and soil treatments exhibited better protection than that of individual treatment alone. FS6 wettable powder (WP) soil treatment in combination with thiamethoxam plus metalaxyl-M plus fludioxonil for seed coating performed the best, with greater than 83% overall control efficacy for seedling diseases. FS6 had a long-acting effect of greater than 78% control efficacy on ginseng gray mold at 30 days after the last application, almost 2.5- and 2-fold better than that of B. amyloliquefaciens B7900 WP and cyprodinil, respectively. In addition, FS6 reduced the diversity and relative abundance of fungi and affected the fungi and bacterial composition in the rhizosphere soil of ginseng. Therefore, FS6 can be used to effectively control seedling diseases and gray mold in ginseng.Maize lethal necrosis (MLN) disease appeared in Kenya in 2011, causing major damage. In a first survey of 121 communities in 2013, participants estimated the proportion of households affected and the yield loss in affected areas; from this survey, the overall loss was estimated at 22%, concentrated in western Kenya (94%). Efforts to combat the disease included planting resistant varieties, creating awareness of MLN management, and producing pathogen-free seed. In 2018, the same communities were revisited and asked the same questions, establishing a panel community survey. The results showed that incidents of MLN had greatly decreased, and the number of communities that had observed it had reduced from 76% in 2013 to 26% by the long rains of 2018; while still common in western Kenya (60%), MLN had greatly reduced elsewhere (to 10%). In 2013, 40% of farmers were affected, yield loss among affected farmers was estimated at 44%, and total yield loss was estimated at 22% (a production loss of 0.5 million metric tons/year), valued at US$187 million.