Activity

  • Griffin Thygesen posted an update 1 month ago

    Chronic stress can lead to depression due to elevated levels of stress hormones such as glucocorticoid. This is accompanied by an increase in reactive oxygen species (ROS) levels in the brain, which can cause dendritic spine loss and atrophy in neurons, followed by memory loss. learn more Dicaffeoylquinic acids (diCQAs) are naturally occurring polyphenolic antioxidant compounds in Arctium lappa extracts (AL). The effects of natural derivatives of cafferoylqunic acid on stress hormone-induced depressive behavior and their underlying mechanisms are uncertain. In the current study, we showed that diCQAs reduced depressive behaviors including memory loss in corticosterone (CORT) treated mice. The mechanism of anti-depressants of diCQAs is likely through reduction of ROS production by inhibiting the activity of monoamine oxidase (MAO) type A and B in neurons and astrocytes. Among diCQAs, 3,4- and 3,5-diCQA significantly inhibited the activity of MAO enzymes followed by the reduction of ROS in neurons and astrocytes and also protected neuronal atrophy and synaptic transmission against stress hormone. These results suggest that 3,4- and 3,5-diCQAs effectively reduced depressive symptoms and inhibited ROS production to alleviate memory loss in stress hormone-induced depressive mice and hence, which provide some potential natural antidepressants.Plasma contains several bioactive molecules (RNA, DNA, proteins, lipids, and metabolites), which are well preserved in extracellular vesicles, that are involved in many types of cell-to-cell interactions, and are capable of modifying biological processes in recipient cells. To obtain information about the source of mRNA molecules present in the plasma, we analyzed the plasma extracellular RNA (exRNA) of healthy individuals using RNA-sequencing and compared it to that of the peripheral blood mononuclear cell (PBMCs) of the same individual. The resultant data indicates that large proportion of the transcripts in plasma are derived from cell types other than PBMCs. To assess aging-associated changes in the plasma exRNA composition, gene ontology enrichment analysis was performed, revealing a functional decline in biological processes as a result of aging. Additionally, plasma RNA levels were analyzed with differential expression analysis, revealing 10 transcripts with significant aging-associated changes. Thus, it seems that the plasma exRNA is not fully derived from the PBMCs. Instead, other cell types supply RNAs to constitute the plasma exRNA compartment. This was true in both the young and elderly individuals that were tested. Furthermore, the RNA content of the plasma showed significant changes due to aging, affecting important biological processes.Impaired mobility often co-occurs with depression. However, there is no systematic review evidence as to whether mobility impairments precede the onset of depression. The objective of this systematic review and meta-analysis was to evaluate whether mobility impairment could predict incident depression. A systematic search of cohort studies were performed in MEDLINE, EMBASE, CINAHL and PsycINFO. The target population was people with no depressive symptoms at baseline and follow-up for depression or depressive symptoms of at least three months. Of 1061 identified abstracts, 13 studies met the review eligibility criteria. The majority of included studies (8 out of 13) were of high methodological quality. Follow-up periods ranged from 12 months to 16 years. Gait speed was the most consistently reported mobility measure. Participants with slow gait speed were at higher risk of developing depressive symptoms (pooled OR = 1.93, 95%CI 1.54 to 2.42, 11 studies). This review shows that slow gait speed is predictive of the onset of depressive symptoms. Systematic review registration number CRD42020153791.Dietary patterns, microbiome dysbiosis, and gut microbial metabolites (GMMs) have a pivotal role in the homeostasis of intestinal epithelial cells and in disease progression, such as that of colorectal cancer (CRC). Although GMMs and microorganisms have crucial roles in many biological activities, models for deciphering diet-microbiome-host relationships are largely limited to animal models. Thus, intestinal organoids (IOs) have provided unprecedented opportunities for the generation of in vitro platforms with the sufficient level of complexity to model physiological and pathological diet-microbiome-host conditions. Overall, IO responses to GMM metabolites and microorganisms can provide new insights into the mechanisms by which those agents may prevent or trigger diseases, significantly extending our knowledge of diet-microbiome-host interactions.Diabetes and cardiovascular disease (CVD) have evolved as the leading cause of mortality and morbidity worldwide. In addition to traditional risk factors, recent studies have established that the human microbiota, particularly gut bacteria, plays a role in the development of diabetes and CVD. Although the presence of microbes in blood has been known for centuries, mounting evidence in this metagenomic era provides new insights into the role of the blood microbiota in the pathogenesis of non-infectious diseases such as diabetes and CVD. We highlight the origin and physiology of the blood microbiota and circulating microbial metabolites in relation to the etiology and progression of diabetes and CVD. We also discuss translational perspectives targeting the blood microbiota in the diagnosis and treatment of diabetes and CVD.Neutralization of tumor necrosis factor (TNF) represents a widely used therapeutic strategy for autoimmune diseases including inflammatory bowel disease (IBD). However, the fact that many patients with IBD are non-responsive to anti-TNF therapies suggests the need for a better understanding of TNF signaling in IBD. Here, we show that co-deletion of TNF receptor 1 (TNFR1, Tnfrsf1a) in the Il10-/- spontaneous colitis model exacerbates disease, resulting in very-early-onset inflammation after weaning. The disease can be interrupted by treatment with antibiotics. The single deletion of TNFR1 induces subclinical colonic epithelial dysfunction and mucosal immune abnormalities, including accumulation of neutrophils and depletion of B cells. During the pre-disease period (before weaning), both Tnfr1-/- and Il10-/-Tnfr1-/- animals exhibit impaired expression of pro-inflammatory cytokines compared with wild-type and Il10-/- controls, respectively. Collectively, these results demonstrate the net anti-inflammatory functions of TNF/TNFR1 signaling through the regulation of colonic immune homeostasis in early life.