Activity

  • Penn Daniels posted an update 1 month ago

    In conclusion, our findings found that GE activated AMPKα to suppress myocardial ROS accumulation, thus blocking NLRP3 inflammasome-mediated cardiomyocyte apoptosis and pyroptosis and improving cardiac function in mice with sepsis. The enhanced green fluorescent protein (eGFP) is one of the most employed variants of fluorescent proteins. Nonetheless little is known about the oxidative modifications that this protein can undergo in the cellular milieu. The present work explored the consequences of the exposure of eGFP to free radicals derived from γ-radiolysis of water, and AAPH thermolysis. Results demonstrated that protein crosslinking was the major pathway of modification of eGFP towards these oxidants. As evidenced by HPLC-FLD and UPLC-MS, eGFP crosslinking would occur as consequence of a mixture of pathways including the recombination of two protein radicals, as well as secondary reactions between nucleophilic residues (e.g. lysine, Lys) with protein carbonyls. The first mechanism was supported by detection of dityrosine and cysteine-tyrosine bonds, whilst evidence of formation of protein carbonyls, along with Lys consumption, would suggest the formation and participation of Schiff bases in the crosslinking process. Despite of the degree of oxidative modifications elicited by peroxyl radicals (ROO•) generated from the thermolysis of AAPH, and free radicals generated from γ-radiolysis of water, that were evidenced at amino acidic level, only the highest dose of γ-irradiation (10 kGy) triggered significant changes in the secondary structure of eGFP. These results were accompanied by the complete loss of fluorescence arising from the chromophore unit of eGFP in γ-irradiation-treated samples, whereas it was conserved in ROO•-treated samples. These data have potential biological significance, as this fluorescent protein is widely employed to study interactions between cytosolic proteins; consequently, the formation of fluorescent eGFP dimers could act as artifacts in such experiments. Enterovirus A71 (EV-A711) RNA contains an internal ribosomal entry site (IRES) to direct cap-independent translation. IRES-dependent translation requires the host’s translation initiation factors and IRES-associated trans-acting factors (ITAFs). We previously showed that hnRNP A1, the mRNA stability factor HuR, and the RISC subunit Argonaute 2 (Ago2) are ITAFs that associate with stem loop II (SL-II) of the IRES and promote IRES-dependent translation. By contrast, the mRNA decay factor AUF1 is a negative-acting ITAF that also binds SL-II. Moreover, the small RNA-processing enzyme Dicer produces at least four virus-derived, small RNAs (vsRNAs 1-4) from the EV-A71 5’UTR in infected cells. One of these, vsRNA1, derived from SL-II, inhibits IRES activity via an unknown mechanism. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with SL-II. This presents a possible mechanism by which vsRNA1 could control association of ITAFs with the IRES and modulate viral translation. Here, we describe methods for functional analyses of vsRNA1-mediated regulation of IRES activity. These methods should be applicable to other virus-derived, small RNAs as well. BACKGROUND A major concern for the extracellular vesicle (EV) field is the current lack of accurate methods for EV quantification. Total protein measurement fails to reliably quantify EVs from serum-containing conditioned media and classical nanoparticle tracking analysis (NTA) allows quantification and size determination of particles, but fails to discriminate between membrane-bounded EVs, lipids and protein aggregates. However, EVs can be fluorescently labelled with non-specific membrane markers or with antibodies specifically recognizing EV surface marker proteins. Fluorescence-based NTA (F-NTA) is thus emerging as a method for counting and phenotyping of EVs. We have validated a differential NTA/F-NTA method using specific antibodies against surface markers in analogy to flow cytometric analyses. METHODS EVs from umbilical cord mesenchymal stromal cells (UC-MSCs) were isolated by a combined tangential flow filtration and ultracentrifugation protocol. EV preparations from 2 × 107 cells were stained with AlexaFluor 488-conjugated specific antibodies or corresponding isotype controls. Amount and size of particles in normal scattering light mode (N mode) versus fluorescence mode (F mode, laser wavelength 488 nm) was measured using ZetaView Nanoparticle Tracking Analyzer (Particle Metrix). Cryo electron microscopy (EM) was used to verify the presence of membrane bilayer surrounded nanoparticles. RESULTS All UC-MSC-EV preparations were found positive for typical EV marker proteins and negative for MHC class I. Novel and improved devices that include more sensitive cameras for detection in the fluorescent mode further increase the detection limit. CONCLUSION Differential NTA/F-NTA facilitates determination of the percentage of EV marker protein-positive nanoparticles within a mixed particulate solution. The set of markers can be extended to other MSC-EV positive and negative surface proteins in order to establish F-NTA-based profiling as a supporting method for the quantification of EVs. Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular research, due to the capability of the method in capturing molecular events and structural transitions that describe the function as well as the physiochemical properties of biomolecular systems. Due to the progressive development of more efficient algorithms, expansion of the available computational resources, as well as the emergence of more advanced methodologies, the scope of computational studies has increased vastly over time. We now have access to a multitude of online databases, software packages, larger molecular systems and novel ligands due to the phenomenon of emerging novel psychoactive substances (NPS). Adavosertib With so many advances in the field, it is understandable that novices will no doubt find it challenging setting up a protein-ligand system even before they run their first MD simulation. These initial steps, such as homology modeling, ligand docking, parameterization, protein preparation and membrane setup have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular sciences benefit from the applications provided by these technologies. However, there still remains no standard on their usage. Therefore, our aim within this review is to provide a clear overview of a variety of concepts and methodologies to consider, providing a workflow for a case study of a membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with different stimulants, where MD simulations have recently been applied successfully. In many social species, hierarchical status within the group is associated with differences in basal adrenocortical activity. We examined this relationship in naked mole-rats (Heterocephalus glaber), eusocial rodents with arguably the most extreme social hierarchies of all mammals. This species lives in colonies where breeding is restricted to one socially dominant ‘queen’ and her male consorts, and all other individuals are reproductively suppressed ‘subordinates’. The relationship between cortisol and social status in naked mole-rats has not fully been elucidated, as prior results on this topic have been contradictory. We used non-invasive feces sampling to measure baseline cortisol levels in eight laboratory colonies of naked mole-rats, to either replicate or reject rank differences. First, we successfully validated an assay to measure fecal cortisol metabolites (FCMs). Removal from the colony for the validation experiment, either alone or with an opposite sex conspecific, induced prolonged elevation of FCM levels on a scale of days to weeks. This increase in cortisol did not prevent the removed animals from sexually maturing. In colony-housed animals, we found no relationship between rank in the social hierarchy and FCM levels. Further, queens, breeding males, and reproductively suppressed subordinates all had equivalent FCM levels. We conclude that this species shows little evidence of the ‘stress of dominance’ or ‘stress of subordination’ and that reproductive suppression in naked mole-rats is not driven by elevated cortisol levels. Aromatase catalyzes conversion of testosterone to estradiol and is expressed in a variety of tissues, including the brain. Suppression of aromatase adversely affects metabolism and physical activity behavior, but mechanisms remain uncertain. The hypothesis tested herein was that whole body aromatase deletion would cause gene expression changes in the nucleus accumbens (NAc), a brain regulating motivated behaviors such as physical activity, which is suppressed with loss of estradiol. Metabolic and behavioral assessments were performed in male and female wild-type (WT) and aromatase knockout (ArKO) mice. NAc-specific differentially expressed genes (DEGs) were identified with RNAseq, and associations between the measured phenotypic traits were determined. Female ArKO mice had greater percent body fat, reduced spontaneous physical activity (SPA), consumed less energy, and had lower relative resting energy expenditure (REE) than WT females. Such differences were not observed in ArKO males. However, in both sexes, a top DEG was Pts, a gene encoding an enzyme necessary for catecholamine (e.g., dopamine) biosynthesis. In comparing male and female WT mice, top DEGs were related to sexual development/fertility, immune regulation, obesity, dopamine signaling, and circadian regulation. SPA correlated strongly with Per3, a gene regulating circadian function, thermoregulation, and metabolism (r = -0.64, P = .002), which also correlated with adiposity (r = 0.54, P = .01). In conclusion, aromatase ablation leads to gene expression changes in NAc, which may in turn result in reduced SPA and related metabolic abnormalities. These findings may have significance to post-menopausal women and those treated with an aromatase inhibitor. Synthetic long peptide (SLP) vaccination is a promising new treatment strategy for patients with a chronic hepatitis B virus (HBV) infection. We have previously shown that a prototype HBV-core protein derived SLP was capable of boosting CD4+ and CD8+ T cell responses in the presence of a TLR2-ligand in chronic HBV patients ex vivo. For optimal efficacy of a therapeutic vaccine in vivo, adjuvants can be conjugated to the SLP to ensure delivery of both the antigen and the co-stimulatory signal to the same antigen-presenting cell (APC). Dendritic cells (DCs) express the receptor for the adjuvant and are optimally equipped to efficiently process and present the SLP-contained epitopes to T cells. Here, we investigated TLR2-ligand conjugation of the prototype HBV-core SLP. Results indicated that TLR2-ligand conjugation reduced cross-presentation efficiency of the SLP-contained epitope by both monocyte-derived and naturally occurring DC subsets. Importantly, cross-presentation was improved after optimization of the conjugate by either shortening the SLP or by placing a valine-citrulline linker between the TLR2-ligand and the long SLP, to facilitate endosomal dissociation of SLP and TLR2-ligand after uptake. HBV-core SLP conjugates also triggered functional patient T cell responses ex vivo. These results provide an import step forward in the design of a therapeutic SLP-based vaccine to cure chronic HBV. V.