Activity

  • Mckay Stack posted an update 1 day, 6 hours ago

    Strong training is known to form long-term memory (LTM) as it is an inducer for both a learning tag (just like a synaptic tag/molecular tag) and plasticity-related proteins (PRPs), while weak training is an inducer of only a learning tag. However, weak training can also lead to LTM if paired with another behavioral task (open field in our study-a representative of a novel environment) around the time of PRP arrival. Weak behavioral training is a learning tag inducer, while the open field is a PRP inducer. The learning tag then captures these PRPs to form LTM. This is the basis of behavioral tagging (BT). BT is a well-known model for the evaluation of a few learning and memory forms. In this work, we examined the role of glutamate and D1/D5 (dopamine) receptors in the synthesis of a novel object recognition (NOR) tag (learning) as well as in PRP arrival, which come together to form NOR-LTM. Employing antagonists and/or agonists preceding or proceeding the open field and/or NOR training, it was revealed that the activation/stimulation of D1/D5 (dopamine) receptors and glutamatergic NMDA receptors plays a critical part in PRP arrival. We found that the activation/stimulation of NMDA receptors also contributes to the setting of the learning tag. Moreover, changes in glutamate, dopamine, and GABA neurotransmitter levels were also analyzed. These findings thus demonstrate the critical time window required for NOR-LTM formation based on the process of BT along with the role of activation/stimulation of D1/D5 (dopamine) receptors and NMDA receptors in the arrival of PRPs and learning tags for NOR-LTM formation.Operating microbial fuel cells (MFCs) under extreme pH conditions offers a substantial benefit. Acidic conditions suppress the growth of undesirable methanogens and increase redox potential for oxygen reduction reactions (ORRs), and alkaline conditions increase the electrocatalytic activity. However, operating any fuel cells, including MFCs, is difficult under such extreme pH conditions. Here, we demonstrate a pH-universal ORR ink based on hollow nanospheres of manganese oxide (h-Mn3O4) anchored with multiwalled carbon nanotubes (MWCNTs) on planar and porous forms of carbon electrodes in MFCs (pH = 3-11). Nanospheres of h-Mn3O4 (diameter ∼ 31 nm, shell thickness ∼ 7 nm) on a glassy carbon electrode yielded a highly reproducible ORR activity at pH 3 and 10, based on rotating disk electrode (RDE) tests. A phenomenal ORR performance and long-term stability (∼106 days) of the ink were also observed with four different porous cathodes (carbon cloth, carbon nanofoam paper, reticulated vitreous carbon, and graphite felt) in MFCs. The ink reduced the charge transfer resistance (R ct) to the ORR by 100-fold and 45-fold under the alkaline and acidic conditions, respectively. The current study promotes ORR activity and subsequently the MFC operations under a wide range of pH conditions, including acidic and basic conditions.Geopolymer is a kind of material with a better ability of high-temperature and corrosion resistance. Poor adhesion could easily lead to problems such as coating cracks, peeling at an early stage, and inability to work with the substrate. The adhesion depends on many factors such as chemical composition of the raw materials, the formulation of the geopolymer, the type of substrate, surface roughness of the substrate, etc. The higher the Si/Al ratio, the greater the shear strength of the coating. This is because geopolymers synthesized with different Si/Al ratios have different phases in the geopolymer binder. Each study uses different multi-parameter combinations selected by itself, which is not uniform and has no universal applicability. As the parameter Ra is determined by the profile centerlines of the substrate surface, it is difficult to get an appropriate value of Ra to represent the roughness of the substrate surface. The parameter-relative area, determined by area scale fractal analysis, can effectively characterize the surface roughness, predict the texture component of bond strength, and establish a connection between which and the bonding performance of the geopolymer coating at a high level of confidence. The bonding strength reduces with the decrease in the value of the relative area. The magnitude of scale employed should be seriously determined when characterizing the surface roughness.Here, Mangifera indica leaves (MILs) have been used to collect atmospheric water for the first time. This novel material has been viewed by mankind as environmental waste and is mostly discarded or incinerated, causing environmental pollution. By turning waste into wealth, MILs have proven resourceful and can help ameliorate the water crisis, especially in tropical countries. The unprecedented water collection result is enough to describe MILs as an ideal material for atmospheric water collection when compared to other natural plants. Both the physical and chemical surface morphologies were extensively characterized. This comparative study shows that MIL surface droplet termination and hydrophilic nature differ from those of other materials, with the apex playing a key role in the roll-off of the droplet. The surface wettability and its interaction with the droplet are of keen interest in this study.In the study, ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis of Leucosidea sericea leaf and stem extracts led to the identification of various classes of compounds. Further chromatographic purifications resulted in the isolation of 22 compounds that consisted of a new triterpenoid named leucosidic acid A (1), an acetophenone derivative 2, a phloroglucinol derivative 3, three chromones 4-6, seven pentacyclic triterpenoids 7-13, a phytosterol glucoside 14, a flavonoid 15, and seven flavonoid glycosides 16-22. Nineteen of these compounds including the previously undescribed triterpenoid 1 are isolated for the first time from L. sericea. The structures of the isolated compounds were assigned based on their high-resolution mass spectrometry and nuclear magnetic resonance data. Some of the isolated triterpenoids were evaluated for inhibitory activity against α-amylase, α-glucosidase, and pancreatic lipase. Of the tested compounds, 1-hydroxy-2-oxopomolic acid (7) and pomolic acid (13) showed higher potency on α-glucosidase than acarbose, which is used as a positive control in this study. The two compounds inhibited α-glucosidase with IC50 values of 192.1 ± 13.81 and 85.5 ± 6.87 μM, respectively.In view of the problem that excessive CO in underground coal mine space can easily lead to a large number of casualties, Cu-Mn-Sn water-resistant eliminators with different Sn contents were prepared by a co-precipitation method. The activity of the eliminators was analyzed by using an independently developed activity testing platform, N2 adsorption and desorption, XRD, SEM, XPS, and FTIR to characterize the activity factors and water resistance. The results showed that Cu-Mn-Sn-20 with 20% Sn content had the highest activity, which was 3.23 times that of Cu-Mn. The main reason for the increased activity is that Cu-Mn-Sn-20 doped with 20% Sn provides a larger specific surface area and more active sites and reduces the pore size, so that the crystallization degree of Cu1.4Mn1.5O4 is lower. The doping of 20% Sn reduces the absorption of lattice water and coordination water and improves the water resistance of Cu-Mn-Sn-type eliminators. The Cu-Mn-Sn-20 water-resistant eliminator is used to quickly eliminate CO in underground coal mines, which is of great significance for the rescue workers in underground coal mines after disasters.Aseptic loosening is the main factor that leads to the failure of orthopedic implants. Enhancing the early osteointegration of a bone implant can lower the risk of aseptic loosening. Here, a Li-doped surface was constructed on a Ti surface via plasma electrolytic oxidation (PEO) to improve osteointegration. The prepared Li-doped PEO coating showed a porous morphology and the sustained release of Li ions. In vitro results of rat bone marrow mesenchymal stem cell (rBMSC) culture studies suggested that the Li-doped Ti surface significantly favored cell adhesion. Moreover, it was found that the Li-doped surface enhanced alkaline phosphatase activity and extracellular matrix mineralization of rBMSCs. In addition, the surface improved the expression of osteogenesis-related genes. Furthermore, a bone implantation model indicated that the Li-doped Ti surface showed improved osteointegration. The incorporation of Li into a Ti surface is a promising method for orthopedic applications.The catechol derivative RC-12 (WR 27653) (1) is one of the few non-8-aminoquinolines with good activity against hypnozoites in the gold-standard Plasmodium cynomolgi-rhesus monkey (Macaca mulatta) model, but in a small clinical trial, it had no efficacy against Plasmodium vivax hypnozoites. In an attempt to better understand the pharmacokinetic and pharmacodynamic profile of 1 and to identify potential active metabolites, we now describe the phase I metabolism, rat pharmacokinetics, and in vitro liver-stage activity of 1 and its metabolites. Compound 1 had a distinct metabolic profile in human vs monkey liver microsomes, and the data suggested that the O-desmethyl, combined O-desmethyl/N-desethyl, and N,N-didesethyl metabolites (or a combination thereof) could potentially account for the superior liver stage antimalarial efficacy of 1 in rhesus monkeys vs that seen in humans. Indeed, the rate of metabolism was considerably lower in human liver microsomes in comparison to rhesus monkey microsomes, as was the formation of the combined O-desmethyl/N-desethyl metabolite, which was the only metabolite tested that had any activity against liver-stage P. vivax; however, it was not consistently active against liver-stage P. cynomolgi. As 1 and all but one of its identified Phase I metabolites had no in vitro activity against P. vivax or P. cynomolgi liver-stage malaria parasites, we suggest that there may be additional unidentified active metabolites of 1 or that the exposure of 1 achieved in the reported unsuccessful clinical trial of this drug candidate was insufficient to kill the P. vivax hypnozoites.The effect of chlorine on mercury oxidation and nitrogen oxides (NO x ) reduction over selective catalytic reduction (SCR) catalysts was investigated in this study. Commercial SCR catalysts achieved a high Hg0 oxidation efficiency when Cl2 was sprayed into the flue gas. Results indicated that an appropriate concentration of Cl2 was found to promote NO x reduction and Hg0 oxidation significantly. An optimal concentration of Cl2 (25 ppm) was found to significantly promote NO x reduction and Hg0 oxidation. Moreover, we studied the effects of Cl2 on NO x reduction and Hg0 oxidation over SCR catalysts under different concentrations of SO2. The SO2 poisoning effect was decreased by Cl2 when the SO2 concentration was low (below 1500 ppm). click here However, sulfate gradually covered the catalyst surface over time during the reaction, which limited the impact of Cl2. Finally, different sulfur-poisoned catalysts were examined in the presence of Cl2. The NO x reduction and Hg0 oxidation performances of sulfate-poisoned catalysts improved when Cl2 was added to the flue gas.