Activity

  • Wren Nicolaisen posted an update 1 day, 12 hours ago

    Appraisal Tool (MMAT) will be independently used by two reviewers to ensure a rigorous study and quality assessment of all included studies. Discussion This scoping review employs a mixed-method approach to map and select relevant literature and summarize and report on young people’s experiences of sexual aggression in the UK. Once the data is summarized, it could inform planning and policy pertaining to a safe and effective sexual health curriculum for all young people, assist with the development of effective strategies to reduce sexual aggression and guide future research.Prominent features of HD neuropathology are the intranuclear and cytoplasmic inclusions of huntingtin and striatal and cortical neuronal cell death. Recently, synaptic defects have been reported on HD-related studies, including impairment of neurotransmitter release and alterations of synaptic components. However, the definite characteristics of synapse dysfunction and the underlying mechanisms remain largely unknown. We studied the gene expression levels and patterns of a number of proteins forming the cytoskeletal matrix of the presynaptic active zones in HD transgenic mice (R6/1), in hippocampal neuronal cultures overexpressing mutant huntingtin and in postmortem brain tissues of HD patients. To investigate the interactions between huntingtin and active proteins, we performed confocal microscopic imaging and immunoprecipitation in mouse and HEK 293 cell line models. The mRNA and protein levels of Bassoon were reduced in mouse and cell culture models of HD and in brain tissues of patients with HD. Moreover, a striking re-distribution of a complex of proteins including Bassoon, Piccolo and Munc 13-1 from the cytoplasm and synapses into intranuclear huntingtin aggregates with loss of active zone proteins and dendritic spines. This re-localization was age-dependent and coincided with the formation of huntingtin aggregates. Using co-immunoprecipitation, we demonstrated that huntingtin interacts with Bassoon, and that this interaction is likely mediated by a third linking protein. Three structural proteins involved in neurotransmitter release in the presynaptic active zones of neurons are altered in expression and that the proteins are redistributed from their normal functional site into mutant huntingtin aggregates.Background Hepatoblastoma (HB) is a common liver malignancy in children. Our previous study has disclosed the crucial role of STAT3 (signal transducer and activator of transcription 3) in HB. Aim of the study Present study was designed to study the circular RNA (circRNA) STAT3 in HB. Methods Gel electrophoresis revealed the circular characteristics of circ-STAT3. Function assays like EdU, transwell and sphere formation assay disclosed the function of circ-STAT3 in HB cells. Mechanism assays including ChIP, RIP, RNA pull down assay demonstrated the macular mechanism underlying circ-STAT3. Results Circ_0043800, which was originated from STAT3, was up-regulated in HB tissues and cells. More importantly, silencing of circ-STAT3 led to the inhibition on HB cell growth, migration and stem-cell characteristics. Circ_0043800 was predominantly located in the cytoplasm of HB cells. Then, circ_0043800 was found to up-regulate STAT3 via sponging miR-29a/b/c-3p. Besides, we identified that STAT3 overexpression partially rescued silenced circ_0043800, while miR-29a/b/c-3p inhibition completely rescued silenced circ_0043800 on HB cellular biological behaviors. Subsequently, Gli2 (GLI family zinc finger 2) was identified as another target of miR-29a/b/c-3p. Circ_0043800 served as a competing endogenous RNA (ceRNA) to up-regulate both Gli2 and STAT3 via sponging miR-29a/b/c-3p. Moreover, we figured out that Gli2 overexpression completely rescued silenced circ_0043800 on HB cell malignant behaviors. After that, we discovered that Gli2 transcriptionally activated circ_0043800. The in-vivo assays further revealed that circ_0043800 promoted HB tumor growth by up-regulation of Gli2 and STAT3. Conclusion Gli2-induced circ_0043800 served as the ceRNA to promote HB by up-regulation of STAT3 and Gli2 at a miR-29a/b/c-3p dependent manner.Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for Coronavirus disease 2019 (COVID-19) has a predilection for infecting the mucosa of the upper and lower airways. Otolaryngologists and supporting health care workers (HCWs) are particularly at high risk of becoming infected while treating patients as many in-office procedures and surgeries are Aerosol Generating Medical Procedures (AGMP). Based on a review of the literature and various guidelines, recommendations are made to mitigate the risk to health care workers of becoming infected with SARS-CoV-2 while providing clinical care. Recommendations During the COVID-19 pandemic all elective and non-time sensitive Otolaryngology procedures should be deferred to mitigate the risk of transmission of infection to HCWs. For non-AGMPs in all patients, even COVID-19 positive patients Level 1 PPE (surgical mask, gown, gloves and face shield or goggles) is sufficient. If local prevalence is favourable and patients are asympserve as guidance and need to be interpreted based on local factors and availability of healthcare resources.Background Idiopathic pulmonary fibrosis is a chronic, progressive, and severe disease with a limited response to currently available therapies. Epithelial cell injury and failure of appropriate healing or regeneration are central to the pathogenesis of idiopathic pulmonary fibrosis. The purpose of this study is to investigate whether intratracheal transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can stop and reverse the fibrotic process in an experimental model of bleomycin-induced lung fibrosis in rats. Methods Human induced pluripotent stem cells were differentiated to alveolar type II-like cells and characterized. Lung fibrosis was induced in rats by a single intratracheal instillation of bleomycin. Animals were transplanted with human induced pluripotent stem cells differentiated to alveolar type II-like cells at a dose of 3 × 106 cells/animal 15 days after endotracheal bleomycin instillation when the animal lungs were already fibrotic. Animals were sacrificed 21 days after the induction of lung fibrosis. Lung fibrosis was assessed by hydroxiprolin content, histologic studies, and the expression of transforming growth factor-β and α-smooth muscle actin. Results Cell transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can significantly reduce pulmonary fibrosis and improve lung alveolar structure, once fibrosis has already formed. This is associated with the inhibition of transforming growth factor-β and α-smooth muscle actin in the damaged rat lung tissue. Conclusion To our knowledge, this is the first data to demonstrate that at the fibrotic stage of the disease, intratracheal transplantation of human induced pluripotent differentiated to alveolar type II-like cells halts and reverses fibrosis.Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Adavosertib Wee1 inhibitor Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.Background Systems thinking is a conceptual approach that can assist stakeholders in understanding complexity and making progress on persistent public health challenges. Neglected tropical diseases (NTDs), a complex global health problem, are responsible for a large disease burden among impoverished populations around the world. This aim of this study was to better discern the many complexities of the global NTD system in order to identify and act on leverage points to catalyse progress towards ending NTDs. Methods Existing frameworks for systems change were adapted to form the conceptual framework for the study. Using a semi-structured interview guide, key informant interviews were conducted with NTD stakeholders at the global level and at the country level in Nigeria. The interview data were coded and analysed to create causal loop diagrams that resulted in a qualitative model of the global NTD system. Results The complete qualitative model is discussed and presented visually as six separate sub-components that highlight key forces and feedback loops within the global NTD system. Conclusions We identified five leverage points for NTD system change, namely (1) clarify the potential for and assess realistic progress towards NTD elimination, (2) increase support for interventions besides drug delivery, (3) reduce dependency on international donors, (4) create a less insular culture within the global NTD community, and (5) systemically address the issue of health worker incentives. The specific findings for NTDs raise a number of uncomfortable questions that have not been addressed, at least in part, because it is easier to continue focusing on ‘quick win’ solutions. The study provides a model of a systems thinking approach that can be applied to other complex global health and development challenges in order to understand complexity and identify leverage points for system change.Background Birthweight marks an important milestone of health across the lifespan, including cardiometabolic disease risk in later life. The placenta, a transient organ at the maternal-fetal interface, regulates fetal growth. Identifying genetic loci where DNA methylation in placenta is associated with birthweight can unravel genomic pathways that are dysregulated in aberrant fetal growth and cardiometabolic diseases in later life. Results We performed placental epigenome-wide association study (EWAS) of birthweight in an ethnic diverse cohort of pregnant women (n = 301). Methylation at 15 cytosine-(phosphate)-guanine sites (CpGs) was associated with birthweight (false discovery rate (FDR) less then 0.05). Methylation at four (26.7%) CpG sites was associated with placental transcript levels of 15 genes (FDR less then 0.05), including genes known to be associated with adult lipid traits, inflammation and oxidative stress. Increased methylation at cg06155341 was associated with higher birthweight and lower FOSL1 expression, and lower FOSL1 expression was correlated with higher birthweight.