Activity

  • Riise Timmons posted an update 2 days, 7 hours ago

    We found earlier that performance-contingent rewards lead to faster performance than equivalent losses [Carsten, Hoofs, Boehler, & Krebs, 2019. Motivation Science, 5(3). http//dx.doi.org/10.1037/mot0000117]. Here, we further tested the hypothesis that motivation to gain rewards is higher than to avoid losses, even when incentive values are matched. As implicit markers of motivation, we assessed electroencephalography (EEG) focusing on the P3 after target and feedback onset, and the Feedback-Related Negativity (FRN), as well as simultaneously recorded pupil size. Comparing only reward and loss prospect trials in Experiment 1, we found no consistent differences in behavior and electrophysiological markers of motivation, although pupil data suggested higher arousal after feedback in potential-loss trials. Including additional no-incentive trials in Experiment 2, we found consistent evidence that motivation to gain rewards was higher than to avoid losses In line with behavior, the target-P3 was most pronounced for reward-related stimuli, followed by loss and no-incentive ones. This same ranking was found in the P3 and the FRN after positive outcomes (i.e., reward, avoided loss, and correct feedback in no-incentive trials). Negative outcomes featured a different pattern in line with the pupil response, which suggests that losses are emotionally salient events, without invigorating behavior proportionally. In sum, these findings suggest that the motivation to gain rewards is more pronounced than motivation to avoid equivalent losses, at least in tasks promoting transient increases in attention triggered by incentive prospect. These motivational differences may arise as avoided losses are not profitable in the long term, in contrast to gained rewards.In Bacillus subtilis, a sporulation-related gene, spsM, is disrupted by SPβ prophage, but reconstituted during sporulation through SPβ excision. The spsM reconstitution is catalyzed by a site-specific DNA recombinase, SprA, and its cognate recombination directionality factor, SprB. SprB interacts with SprA, directing the SprA-mediated recombination reaction from integration to excision; however, the details of the directionality control remains unclear. Here, we demonstrate the importance of the extreme C-terminal region (ECT) of SprA in the DNA recombination and directionality control. We created a series of SprA C-terminal deletants and examined their DNA-binding and recombination activities. Deletions in the ECT caused a loss of integration and excision activity, the magnitudes of which positively correlated with the deletion size. Gel shift study revealed that the loss of the integration activity was attributable to the failure of synaptic complex formation. The excision deficiency was caused by defective interaction with SprB. click here Moreover, alanine scanning analysis revealed that Phe532 is essential to interact with SprB. SprAF532A , therefore, showed almost no excision activity, while retaining the integration activity. Collectively, these results suggest that the ECT plays the crucial roles in the interaction of SprA with SprB and possibly in the directional control of the recombination.The ability of a single Ca2+ ion to play an important role in cell biology is highlighted by the need for cells to form Ca2+ signals in the dimensions of space, time, and amplitude. Thus, spatial and temporal changes in intracellular Ca2+ concentration are important for determining cell fate. Optogenetic technology has been developed to provide more precise and targeted stimulation of cells. Here, U2OS cells overexpressing Ca2+ translocating channelrhodopsin (CatCh) were used to mediate Ca2+ influx through blue light illumination with various parameters, such as intensity, frequency, duty cycle, and duration. We identified that several Ca2+ -dependent transcription factors and certain kinases can be activated by specific Ca2+ waves. Using a wound-healing assay, we found that low-frequency Ca2+ oscillations increased cell migration through the activation of NF-κB. This study explores the regulation of cell migration by Ca2+ signals. Thus, we can choose optical parameters to modulate Ca2+ waves and achieve activation of specific signaling pathways. This novel methodology can be applied to clarify related cell-signaling mechanisms in the future.Complication of arsenic trioxide (ATO) and other drugs in cancer treatment has attracted much focus, but is limitedly investigated in hepatocellular carcinoma (HCC). This study aimed to explore the role of ATO combined with canstatin in HCC. HepG2 cells were treated with different concentrations of ATO with or without canstatin, CCK-8, flow cytometry, Transwell assays were conducted to determine cell proliferation, apoptosis, adhesion, migration, and invasion abilities. Besides, the protein expression or mRNA level of caspase-3, PCNA, and MMP-2 was measured using western blotting or qRT-PCR. BALB/c-nu/nu mice were used to establish nude mouse transplantation tumor model, and received ATO or canstatin treatment for 3 weeks. The results showed that ATO inhibited cell proliferation, adhesion, migration and invasion, and promoted cell apoptosis with a concentration-dependent way. Canstatin had a significantly inhibitory effect on cell proliferation, but had limited effects on the other cellular behaviors. Besides, combination with ATO and canstatin strengthened the effects of ATO alone on cell proliferation inhibition and cell apoptosis promotion. Moreover, both of ATO and canstatin increased the protein expression of caspase-3, while decreased PCNA and MMP-2, which was further strengthened upon their combination. Furthermore, both of ATO and canstatin inhibited tumor growth in vivo, which was also strengthened upon their combination. Collectively, we found that combined canstatin and ATO significantly inhibited cell proliferation, migration and adhesion abilities, and promoted cell apoptosis, and inhibited tumor growth, thus suppressed the progression of HCC.We aimed to evaluate the feasibility and long-term functional outcomes of surgical correction of adult buried penis patients due to complications of childhood circumcision. A retrospective analysis was performed for patients who underwent treatment for buried penis between 1997 and 2019. An autologous split-thickness skin graft (STSG) was used. Surgical management steps included circumcision, resection of the bands between the corpora and other tissues, harvesting of STSG from femoral region and graft application. Surgical and functional outcomes were the primary end points. Thirteen patients were included with a mean age of 22.4 years and median body mass index 27. Patients had similar symptoms, including sexual dysfunction, inadequate penile length, impossible penetration and decreased quality of life. No early post-operative complication was seen. During a median of 44-month follow-up, post-operative long-term complications were seen in 4 (30%) patients decreased graft sensation (n = 2); graft contracture five months after surgery (n = 1); and retarded ejaculation (n = 1). Patients’ post-operative three-month International Index of Erectile Function (IIEF) score and sexual satisfaction score (SSS) significantly increased compared with patients’ pre-operative scores (IIEF; 22.8 vs. 14.1, p = .03, SSS; 8.7 vs. 3.2, p less then .01). Buried penis is a rare but challenging condition. Patients had excellent graft acceptance with successful functional outcomes.

    The knowledge of the contribution of anatomical and physiological parameters to interindividual pharmacokinetic differences could potentially be used to improve individualized treatment planning for radionuclide therapy. The aim of this study was therefore to identify the physiologically based pharmacokinetic (PBPK) model parameters that determine the interindividual variability of absorbed doses (ADs) to kidneys and tumor lesions in therapy with

    Lu-labeled PSMA-targeting radioligands.

    A global sensitivity analysis (GSA) with the extended Fourier Amplitude Sensitivity Test (eFAST) algorithm was performed. The whole-body PBPK model for PSMA-targeting radioligand therapy from our previous studies was used in this study. The model parameters of interest (input of the GSA) were the organ receptor densities [R

    ], the organ blood flows f, and the organ release rates λ. These parameters were systematically sampled NE times according to their distribution in the patient population. The corresponding pharmacoomising approach for developing an individualized treatment with 177 Lu-labeled PSMA-targeting radioligands.Among highly migratory fish species, nursery areas occupied by juveniles often differ from adult habitats. To better understand the spatial dynamics of Canada’s Northern cod stock, juveniles caught off the east coast of Newfoundland and Labrador were compared to adults from the same region as well as individuals from other areas in Atlantic Canada using double-digest restriction site-associated DNA sequencing-derived single nucleotide polymorphisms. A reduced proportion of homozygotes with a chromosomal inversion located in linkage group 1 (LG1) was detected between juvenile and adult samples in the Northern cod stock region, potentially indicating age-dependent habitat use or ontogenetic selection for attributes associated with the many genes located in LG1. No selectively neutral genetic differences were found between samples from the Northern cod stock; nevertheless, significant differences were found between some of these samples and cod collected from St. Pierre Bank, Bay of Fundy, Browns Bank and the southern Scotian Shelf. Clustering analysis of variants at neutral loci provided evidence for three major genetic units (a) the Newfoundland Atlantic Coast, (b) eastern and southern Gulf of St. Lawrence and Burgeo Bank and (c) the Bay of Fundy, Browns Bank and southern Scotian Shelf. Both adaptive and neutral population structure within the Northern cod stock should be considered by managers to promote demographic rebuilding of the stock.Youth are sometimes victimized by their friends, but we know little about the nature of these relationships. Taking a dyadic approach, we studied relationships characterized by both friendship and aggression. Participants (952 middle schoolers; 50% female; 44% Latinx) nominated friends and aggressive perpetrators and victims. Using two analytic samples of friend dyads (N = 6971) and aggressive dyads (N = 4662), results indicated that aggression by a friend was somewhat common. Compared with friend dyads without aggression, aggressive friend dyads were stronger (i.e., reciprocal) and longer lasting, though victimized youth were less satisfied with the friendship. Aggressive dyads who were friends more often had reciprocal aggression than aggressive dyads who were not friends. Results provide insight into the dynamics of aggression in close peer relationships.During the mitotic cycle, the rod-shaped fission yeast cells grow only at their tips. The newly born cells grow first unipolarly at their old end, but later in the cycle, the ‘new end take-off’ event occurs, resulting in bipolar growth. Photographs were taken of several steady-state and induction synchronous cultures of different cell cycle mutants of fission yeast, generally larger than wild type. Length measurements of many individual cells were performed from birth to division. For all the measured growth patterns, three different functions (linear, bilinear and exponential) were fitted, and the most adequate one was chosen by using specific statistical criteria, considering the altering parameter numbers. Although the growth patterns were heterogeneous in all the cultures studied, we could find some tendencies. In cultures with sufficiently wide size distribution, cells large enough at birth tend to grow linearly, whereas the other cells generally tend to grow bilinearly. We have found that among bilinearly growing cells, the larger they are at birth, the rate change point during their bilinear pattern occurs earlier in the cycle.