-
Reynolds Pearson posted an update 1 week, 6 days ago
However, CTS-induced signaling occurs at concentrations at least one order of magnitude lower than that of inotropy, which eliminates their well known toxic actions on the heart. The current study adds a novel mechanism that CTS could exert its biased signaling properties through the NKA signal transducer. SIGNIFICANCE STATEMENT Although it is now well accepted that NKA has an ion-pumping-independent signaling function, it is still debated whether direct and conformation-dependent NKA/effector interaction is a key to this function. Therefore, this investigation is significant in advancing our understanding of the basic biology of NKA-mediated signal transduction and gaining molecular insight into the structural elements that are important for cardiotonic steroid’s biased action.The Gram-positive bacterium Listeria monocytogenes survives in environments ranging from the soil to the cytosol of infected host cells. Key to L. monocytogenes intracellular survival is the activation of PrfA, a transcriptional regulator that is required for the expression of multiple bacterial virulence factors. Mutations that constitutively activate prfA (prfA* mutations) result in high-level expression of multiple bacterial virulence factors as well as the physiological adaptation of L. monocytogenes for optimal replication within host cells. Here, we demonstrate that L. monocytogenesprfA* mutants exhibit significantly enhanced resistance to oxidative stress in comparison to that of wild-type strains. Transposon mutagenesis of L. monocytogenesprfA* strains resulted in the identification of three novel gene targets required for full oxidative stress resistance only in the context of PrfA activation. One gene, lmo0779, predicted to encode an uncharacterized protein, and two additional genes known as cbpA and ygbB, encoding a cyclic di-AMP binding protein and a 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase, respectively, contribute to the enhanced oxidative stress resistance of prfA* strains while exhibiting no significant contribution in wild-type L. monocytogenes Transposon inactivation of cbpA and lmo0779 in a prfA* background led to reduced virulence in the liver of infected mice. These results indicate that L. monocytogenes calls upon specific bacterial factors for stress resistance in the context of PrfA activation and thus under conditions favorable for bacterial replication within infected mammalian cells.Rickettsia rickettsii, the etiological agent of Rocky Mountain spotted fever (RMSF), a life-threatening tick-borne disease that affects humans and various animal species, has been recognized in medicine and science for more than 100 years. Isolate-dependent differences in virulence of R. rickettsii have been documented for many decades; nonetheless, the specific genetic and phenotypic factors responsible for these differences have not been characterized. Using in vivo and in vitro methods, we identified multiple phenotypic differences among six geographically distinct isolates of R. rickettsii, representing isolates from the United States, Costa Rica, and Brazil. Aggregate phenotypic data, derived from growth in Vero E6 cells and from clinical and pathological characteristics following infection of male guinea pigs (Cavia porcellus), allowed separation of these isolates into three categories nonvirulent (Iowa), mildly virulent (Sawtooth and Gila), and highly virulent (Sheila SmithT, Costa Rica, and Taiaçu). Transcriptional profiles of 11 recognized or putative virulence factors confirmed the isolate-dependent differences between mildly and highly virulent isolates. These data corroborate previous qualitative assessments of strain virulence and suggest further that a critical and previously underappreciated balance between bacterial growth and host immune response could leverage strain pathogenicity. Also, this work provides insight into isolate-specific microbiological factors that contribute to the outcome of RMSF and confirms the hypothesis that distinct rickettsial isolates also differ phenotypically, which could influence the severity of disease in vertebrate hosts.Pathogenic Yersinia spp. depend on the activity of a potent virulence plasmid-encoded ysc/yop type 3 secretion system (T3SS) to colonize hosts and cause disease. It was recently shown that Yersinia pseudotuberculosis upregulates the virulence plasmid copy number (PCN) during infection and that the resulting elevated gene dose of plasmid-encoded T3SS genes is essential for virulence. When and how this novel regulatory mechanism is deployed and regulates the replication of the virulence plasmid during infection is unknown. In the present study, we applied droplet digital PCR (ddPCR) to investigate the dynamics of Y. pseudotuberculosis virulence PCN variations and growth rates in infected mouse organs. We demonstrated that both PCN and growth varied in different tissues and over time throughout the course of infection, indicating that the bacteria adapted to discrete microenvironments during infection. The PCN was highest in Peyer’s patches and cecum during the clonal invasive phase of the infection, while the highest growth rates were found in the draining mesenteric lymph nodes. In deeper, systemic organs, the PCN was lower and more modest growth rates were recorded. Our study indicates that increased gene dosage of the plasmid-encoded T3SS genes is most important early in the infection during invasion of the host. The described ddPCR approach will greatly simplify analyses of PCN, growth dynamics, and bacterial loads in infected tissues and will be readily applicable to other infection models.Elderly individuals are at increased risk of life-threatening pulmonary infections. Neutrophils are a key determinant of the disease course of pathogen-induced pneumonia. Optimal host defense balances initial robust pulmonary neutrophil responses to control pathogen numbers, ultimately followed by the resolution of inflammation to prevent pulmonary damage. Recent evidence suggests that phenotypic and functional heterogeneity in neutrophils impacts host resistance to pulmonary pathogens. Apart from their apparent role in innate immunity, neutrophils also orchestrate subsequent adaptive immune responses during infection. Thus, the outcome of pulmonary infections can be shaped by neutrophils. This review summarizes the age-driven impairment of neutrophil responses and the contribution of these cells to the susceptibility of the elderly to pneumonia. We describe how aging is accompanied by changes in neutrophil recruitment, resolution, and function. We discuss how systemic and local changes alter the neutrophil phenotype in aged hosts. We highlight the gap in knowledge of whether these changes in neutrophils also contribute to the decline in adaptive immunity seen with age. We further detail the factors that drive dysregulated neutrophil responses in the elderly and the pathways that may be targeted to rebalance neutrophil activity and boost host resistance to pulmonary infections.Toll-like receptors (TLRs) play a critical role in early immune recognition of Aspergillus, which can regulate host defense during invasive pulmonary Aspergillosis (IPA). However, the role of TLR7 in the pathogenesis of IPA remains unknown. In this study, an in vivo model of IPA was established to investigate the contribution of TLR7 to host anti-Aspergillus immunity upon invasive pulmonary Aspergillus fumigatus infection. The effects of TLR7 on phagocytosis and killing capacities of A. fumigatus by macrophages and neutrophils were investigated in vitro We found that TLR7 knockout mice exhibited lower lung inflammatory response and tissue injury, higher fungal clearance, and greater survival in an in vivo model of IPA compared with wild-type mice. TLR7 activation by R837 ligand led to wild-type mice being more susceptible to invasive pulmonary Aspergillus fumigatus infection. Macrophages, but not neutrophils, were required for the protection against IPA observed in TLR7 knockout mice. Mechanistically, TLR7 impaired phagocytosis and killing of A. fumigatus by macrophages but not neutrophils. Together, these data identify TLR7 as an important negative regulator of anti-Aspergillus innate immunity in IPA, and we propose that targeting TLR7 will be beneficial in the treatment of IPA.
To measure the effects of faecal immunochemical test (FIT) for colorectal cancer (CRC) screening on overall and site-specific long-term effectiveness of population-based organised service screening.
A prospective cohort study of Taiwanese nationwide biennial FIT screening was performed. A total of 5 417 699 eligible subjects were invited to attend screening from 2004 through 2009 and were followed up until 2014. We estimated the adjusted relative rates (aRRs) on the effectiveness of reducing advanced-stage CRC (stage II+) and CRC death by Bayesian Poisson regression models with the full adjustment for a cascade of self-selection factors (including the screening rate and the colonoscopy rate) and the completeness of colonoscopy together with demographic features.
FIT screening (exposed vs unexposed) reduced the incidence of advanced-stage CRC (48.4 vs 75.7 per 100 000) and mortality (20.3 vs 41.3 per 100 000). SalvianolicacidB Statistically significant reductions of both incidence of advanced-stage CRCs (aRR=0.66, 95% CItion of death from CRC with larger long-term effectiveness in the distal colon than the proximal colon. Our findings provide a strong and consistent evidence-based policy for supporting a sustainable population-based FIT organised service screening worldwide. The disparity of site-specific long-term effectiveness also provides an insight into the remedy for lower effectiveness of FIT screening in the proximal colon.
Caring for people with cognitive problems can have an impact on informal caregivers’ health and well-being, and especially increases pressure on healthcare systems due to an increasing ageing society. In response to a higher demand of informal care, evidence suggests that timely support for informal caregivers is essential. The New York University Caregiver Intervention (NYUCI) has proven consistent effectiveness and high adaptability over 30 years. This study has three main objectives to develop and evaluate the Flemish adaptation of the NYUCI in the context of caregiving for older people with early cognitive decline; to explore the causal mechanism of changes in caregivers’ health and well-being and to evaluate the validity and feasibility of the interRAI Family Carer Needs Assessment in Flanders.
Guided by Medical Research Council framework, this study covers the development and evaluation phases of the adapted NYUCI, named PROACTIVE-suPpoRting infOrmal cAregivers of older people with early CogniTIVe den approved by the Ethics Committee of KU Leuven with a dossier number G-2020-1771-R2(MAR). Findings will be disseminated through community information sessions, peer-reviewed publications and national and international conference presentations.
In rural and difficult-to-access settings, early and accurate recognition of febrile children at risk of progressing to serious illness could contribute to improved patient outcomes and better resource allocation. This study aims to develop a prognostic clinical prediction tool to assist community healthcare providers identify febrile children who might benefit from referral or admission for facility-based medical care.
This prospective observational study will recruit at least 4900 paediatric inpatients and outpatients under the age of 5 years presenting with an acute febrile illness to seven hospitals in six countries across Asia. A venous blood sample and nasopharyngeal swab is collected from each participant and detailed clinical data recorded at presentation, and each day for the first 48 hours of admission for inpatients. Multianalyte assays are performed at reference laboratories to measure a panel of host biomarkers, as well as targeted aetiological investigations for common bacterial and viral pathogens.