Activity

  • Bynum Mckay posted an update 1 week, 5 days ago

    Finally, the film containing 4% ZIF-8 NPs (film 5) was chosen as the best sample due to it revealed appropriate mechanical properties, swelling, drug release and cell viability among all samples examined. This study reports on the exploitation of keratinous hydrolysate by keratinase enzymes to produce vitamin B-complex. Toward this end, keratinase enzyme was produced by Bacillus thuringiensis strain MT1, newly isolated from cattle-yard utilising donkey hairs. Scanning electron microscope (SEM) and Fourier transform infrared spectrophotometer (FTIR) analyses demonstrated hairs disintegration and the disruption of the disulphide bonds of the keratin structure, respectively. The biochemical characterisation of the produced enzyme exhibited optimal activity of 422 U/ml at 50 °C and pH 9 with a molecular mass of 80 kDa. The enzyme activity was entirely deactivated by Ethylenediaminetetraacetic acid (EDTA), implying the existence of a metallokeratinase group. Donkey hairs were thus treated with metallokeratinase, emancipating eight essential and eight more non-essential amino acids, which were identified employing amino acid analyser. These amino acids were subsequently utilised by Saccharomyces cerevisiae strain ATCC 64712, at different concentrations, to produce vitamin B-complex. High-performance liquid chromatography (HPLC) analysis revealed the synthesis of vitamins B1, B2, and B12 at various levels associated with concentrations of supplemented amino acids. This report thus highlights the feasible application of keratinase enzyme as an eco-friendly approach to managing hair waste, and concurrently promotes the implementation of hair-based hydrolysate in vitamin B-complex biosynthesis. Planetary ball milling of chitosan microparticles (CMP) for 8 h produced chitosan nanoparticles (CNP) having hydrodynamic diameter of 615.18 nm. The ζ-potential decreased from 56.48 mV (CMP) to 31.52 mV (CNP). High resolution transmission electron microscopy (HRTEM) revealed nanosize, irregular shape and surface roughening of CNP. CNP was whiter than CMP having higher water absorption capacity and decreased flow ability. Both CMP and CNP showed negligible swelling and no water solubility. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed no chemical changes and X-ray diffraction (XRD) showed decreased crystallinity in CNP. In CNP, thermogravimetric analysis (TGA) revealed increased thermal degradation; differential thermogravimetric (DTG) revealed increased rate of thermal degradation; and high temperature differential scanning calorimetry (HDSC) revealed broadening of endothermic and exothermic phases and reduction in glass transition temperature as compared to CMP. In conclusion, planetary ball milling for 8 h produces bright, amorphous and rough CNP with improved functional and comparable thermal properties. V.Recently, the use of nanofibers (NFs) for tissue engineering has been more developed. For this purpose, we fabricated the NFs (Zein/Polycaprolactone/Collagen) (Zein/PCL/Collagen) incorporated by zinc oxide NPs (ZnO NPs) and Aloe-vera (NFs/ZnO/Alv) using the electrospinning method. Prepared NFs were studied for their morphological, mechanical, thermal stability, and hydrophilic properties. Among the developed NFs, those loaded by ZnO (1 wt%) and Alv (8 wt%) and with Zein/PCL (7030) displayed the suitable thermal stability and mechanical properties. The water contact angle of NFs improved by decreasing the Zein/PCL blending ratio. Cell culture results showed that the NFs had good cytocompatibility. The cell adhesion potential of this mats were certified with studying by fibroblast cells for various time intervals (24 h and 72 h). The NFs/ZnO/Alv sample revealed inhibition activity against S. aureus (19.23 ± 1.35 mm) and E. coli (15.38 ± 1.12 mm) bacteria. Thus, these results offered that the prepared NFs can be promised as an active scaffold for wound healing uses. V.Glycosidases are enzymes involved in the cascade reactions leading to the release of aromatic compounds in white wines. However, the use of commercial soluble glycosidases is facing difficulties due to their fast inactivation, poor reaction control, low efficiency of enzyme use, and the presence of catalyst residues in the product. Co-immobilization as cross-linked enzyme aggregates (combi-CLEAs) is a sound alternative allowing the immobilization of enzymes in their own protein matrix, yielding highly stable and active biocatalysts. Notwithstanding, their micrometer sized particles limit their application in industrial processes. To overcome this, combi-CLEAs of β-D-glucosidase (βG) and α-L-arabinofuranosidase (ARA) were entrapped in polymeric chitosan beads. The effect of crosslinking reagents and crosslinking time on the specific activity and stability of combi-CLEAs was studied, and the best conditions for the entrapment of the combi-CLEAs in polymeric chitosan beads were determined varying the concentration of the chitosan solution and the pH of the gelation agent solution. The resulting biocatalyst beads (average diameter of 1.24 mm), retained full activity after 91 days of incubation under winemaking conditions, having specific activities of 0.91 and 0.88 international units of activity per gram for βG and ARA, respectively. Rucaparib ic50 Such characteristics make them suitable for aroma enhancement in wines. V.Trace amines have been reported to be neuromodulators of monoaminergic systems. Trace amines receptor 5 (TAAR5) is expressed in several regions of mice central nervous system, such as amygdala, arcuate nucleus and ventromedial hypothalamus, but very limited information is available on its functional role. The purpose of this study is to examine the effect of TAAR5 agonist alpha-NETA on the generation of mismatch negativity (MMN) analogue in C57BL/6 mice. Event-related potentials have been recorded from awake mice in oddball paradigms before and after the alpha-NETA administration. Alpha-NETA has been found to decrease N40 MMN-like difference, which resulted from the increased response to standard stimuli. An opposite effect has been found for the P80 component the amplitude increased in response both to standard and deviant stimuli. A significant increase in N40 peak latency after the alpha-NETA administration has been found. This may suggest a reduced speed of information processing similar to the increase in P50 and N100 components latencies in schizophrenia patients.