-
Pedersen Just posted an update 1 month ago
As a result, decision support is provided for planning and building resilience systems for urban water systems in the short and long term, based on four main factors.Neurocritical care patients are a complex patient population, and to aid clinical decision-making, many models and scoring systems have previously been developed. More recently, techniques from the field of machine learning have been applied to neurocritical care patient data to develop models with high levels of predictive accuracy. However, although these recent models appear clinically promising, their interpretability has often not been considered and they tend to be black box models, making it extremely difficult to understand how the model came to its conclusion. Interpretable machine learning methods have the potential to provide the means to overcome some of these issues but are largely unexplored within the neurocritical care domain. This article examines existing models used in neurocritical care from the perspective of interpretability. Further, the use of interpretable machine learning will be explored, in particular the potential benefits and drawbacks that the techniques may have when applied to neurocritical care data. Finding a solution to the lack of model explanation, transparency, and accountability is important because these issues have the potential to contribute to model trust and clinical acceptance, and, increasingly, regulation is stipulating a right to explanation for decisions made by models and algorithms. To ensure that the prospective gains from sophisticated predictive models to neurocritical care provision can be realized, it is imperative that interpretability of these models is fully considered.
Quantitative analysis of ventricular cerebrospinal fluid (vCSF) proteins following acute brain injury (ABI) may help identify pathophysiological pathways and potential biomarkers that can predict unfavorable outcome.
In this prospective proteomic analysis study, consecutive patients with severe ABI expected to require intraventricular catheterization for intracranial pressure (ICP) monitoring for at least 5days and patients without ABI admitted for elective clipping of an unruptured cerebral aneurysm were included. vCSF samples were collected within the first 24h after ABI and ventriculostomy insertion and then every 24h for 5days. In patients without ABI, a single vCSF sample was collected at the time of elective clipping. Data-independent acquisition and sequential window acquisition of all theoretical spectra (SWATH)mass spectrometry were used to compare differences in protein expression in patients with ABI and patients without ABI and in patients with traumatic and nontraumatic ABI. Differences in prension (ICH) (ICP ≥ 30mm Hg) or death compared to those without (log 2 fold change + 2.4; p < 0.001), suggesting extensive primary astroglial injury or death. There were differences in the expression of 96 proteins between patients with traumatic and nontraumatic ABI (p < 0.05); intraday and interday differences were observed for six proteins related to structural damage, complement activation, and cholesterol metabolism. Thirty-nine vCSF proteins were associated with an increased risk of severe ICH (ICP ≥ 30mm Hg) in patients with traumatic compared with nontraumatic ABI (p < 0.05). No significant differences were found in protein expression between patients with SAH versus TBI or between those with good versus poor 3-month Glasgow Outcome Scale score.
Dysregulated vCSF protein expression after ABI may be associated with an increased risk of severe ICH and death.
Dysregulated vCSF protein expression after ABI may be associated with an increased risk of severe ICH and death.Current training interventions assessing pediatric functional motor skills do not account for children and adolescents with upper limb reductions who utilize a prosthesis. Prosthesis rejection showed that 1 out of 5 prosthesis users will reject their prosthesis due to lack of durability, lack of function, not meeting the participant’s needs, perceived lack of need, and medical restrictions indicating that prosthetic users believed they were more functional without the device. selleck inhibitor It was hypothesized that an 8-week Home Intervention program will result in significant improvements in gross manual dexterity, bimanual coordination, and the functional activities performed during the program. It was also hypothesized that the novel Prosthesis Measurement of Independent Function (PMIF) score will reflect the Home Intervention performance improvements. Five pediatric participants (ages 5-19 years) with congenital upper limb reductions were fitted with a 3D printed upper extremity prosthesis for their affected limb. Participants then completed the 8-week Home Intervention which included Training activities completed 2×/week for 8 weeks and Non-Training activities completed only at week 1 and week 8. Participant’s times were recorded along with each participant receiving a PMIF score ranging from 0 = unable to complete activity, to 7 = complete independence with activity completion. Results showed a decrease in overall averaged activity times amongst all activities. For all activities performed, individual averaged time decreased with the exception of Ball Play which increased over the 8-week intervention period. There was significant interaction for Home Intervention performance with F = 2.904 (p = 0.003). All participants increased their PMIF scores to 7 (complete independence) at the end of the 8 week intervention period. Decreases in time averages and increases in PMIF scores indicate that learning and functional use of the prostheses have occurred amongst the pediatric participants.
Physical activity is a health-relevant lifestyle factor associated with various benefits on physical and mental health. Several meta-analyses indicated effects of acute and chronic physical activities on elementary cognitive functions such as executive control processes, memory, and attention. Meta-analytic evidence on the effects of physical activity on creative idea generation, which involves a conglomerate of these elementary cognitive functions, is largely missing.
A twofold approach was used to evaluate (1) if there is an association between habitual physical activity and creative ideation and (2) if physical activity interventions (acute and chronic) enhance creative ideation performance.
Multilevel meta-analytic methods were applied to (1) evaluate the cross-sectional association between creative ideation performance and measures of habitual physical activity and (2) the effect of physical activity on creative ideation performance. Indicators of creative ideation (fluency, flexibility, originalitigorously conducted randomized controlled intervention studies and more cross-sectional studies are needed to broaden the evidence in this nascent field of research.
Additive manufacturing (AM), commonly called 3D Printing (3DP), for medical devices is growing in popularity due to the technology’s ability to create complex geometries and patient-matched products. However, due to the process variabilities which can exist between 3DP systems, manufacturer workflows, and digital conversions, there may be variabilities among 3DP parts or between design files and final manufactured products. The overall goal of this project is to determine the dimensional variability of commercially obtained 3DP titanium lattice-containing test coupons and compare it to the original design files.
This manuscript outlines the procedure used to measure dimensional variability of 3D Printed lattice coupons and analyze the differences in external dimensions and pore area when using laser and electron beam fabricated samples. The key dimensions measured were the bulk length, width, and depth using calipers. Strut thickness and pore area were assessed for the lattice components using optical imay state if these results are clinically relevant and further testing needs to be conducted to apply these results to real-world situations.
Based on these results, we can conclude that there are relevant variations between designed files and printed parts. However, we cannot currently state if these results are clinically relevant and further testing needs to be conducted to apply these results to real-world situations.Group IV light sources with vertical emission and non-zero orbital-angular momentum (OAM) promise to unlock many novel applications. In this report, we demonstrate cylindrically symmetrical germanium micro-gear cavities, fabricated by etching a grating around the circumference of standard micro-disks, with periods ranging from 14 to 22. Photoluminescence (PL) measurements were done to identify the confined whispering-gallery modes (WGM). Finite-difference time-domain (FDTD) simulations were conducted to map the resonant modes to their modal profiles and characteristics. Vertical emission of WGMs with non-zero OAM was demonstrated, with a clear dependence of the OAM order ([Formula see text]) on the WGM azimuthal order and the number of micro-gear grating periods. As the chirality, or the direction of rotation, is not controlled in a symmetrical cavity, we propose introducing staircase or triangular-shaped gear periods resulting in an asymmetry. By choosing the diameter, number of periods, and the asymmetrical direction of the gear-teeth, it is possible to generate OAM signals with certain wavelength, OAM order and chirality.The aim was to investigate the vertical root fracture (VRF) resistance and crack formation of root canal-treated teeth restored with different post-luting systems. Human maxillary lateral incisors of similar size were decoronated, assigned to five groups (n = 18, power = 0.9) and embedded in acrylic blocks with artificial periodontal ligament. After root canal filling, post spaces were prepared to place coated fiber-reinforced composite (FRC) or sandblasted titanium (Ti) posts of the same shape and size. Half of the posts were zinc phosphate cemented (C), while the other half was adhesively luted (A). Untreated teeth served as control. After thermal cycling and staircase loading in a chewing simulator, the crack formation on the root dentin surface was microscopically examined and classified as no defect, craze line, vertical crack, and horizontal crack. Subsequently, the samples were loaded until root fracture. Data were analyzed by one-way ANOVA, Tukey’s test, and Fisher’s exact test. All samples survived the chewing simulation without VRF, but crack formation was significantly different between the groups (P = 0.009). The control showed significantly fewer defects than FRC/C, Ti/C, and Ti/A (P = 0.001, P = 0.008, P = 0.008, respectively). FRC/C showed the highest incidence of vertical cracks. FRC/A had the lowest incidence of defects. There was no significant difference in VRF resistance between the groups (P = 0.265). Adhesively luted FRC posts did not increase VRF resistance but reduced the risk of defects. Most defects were craze lines and vertical root cracks.A hydrothermal sol-gel method for reproducible formation of silica nanolayer on the wall of silica capillaries was developed for electrochromatography. The formulation was optimized by observation of uniform gel formation on an optical microscope. The variables of the formulation include types of solvent, water-TEOS ratio, CTAB and urea contents, and mixing method. The procedure produced a coating of silica ca. 100 nm thick layer on the wall of the capillary. Surface morphology of the coating was characterized by SEM, contact angle and chemical composition by FT-IR spectroscopy and X-ray powder diffraction. The coating reduced the electroosmotic mobility producing enhanced separation performance. Eight standard amines (including tyramine and benzhydrylamine, as an internal standard) were separated with peak resolution Rs ≥ 2 for all adjacent peaks and plate number N ≥ 3.0 × 104 m-1. Calibration was linear from 5 to 200 µg L-1, with r2 > 0.9985 and instrumental LOD of 4.9 μg L-1. Five samples of food products were diluted and analyzed for the amines using the coated capillary and only tyramine was detected.