Activity

  • Monaghan Futtrup posted an update 1 week, 5 days ago

    Herein, we reported a Ni-catalyzed carbonylation of cyclopropanol with benzyl bromide to afford multisubstituted cyclopentenone under 1 atm of CO. The reaction proceeds through cascade carbonylation of benzyl bromides, followed by generation of nickel homoenolate from cyclopropanols via β-C elimination to afford 1,4-diketones, which undergoes intramolecular Aldol condensation to furnish highly substituted cyclopentenone derivatives in moderate to good yields. The reaction exhibits high functional group tolerance with broad substrate scope.Chevalinulins A (1) and B (2), two indole diketopiperazine alkaloids containing an unprecedented spiro[bicyclo[2.2.2]octane-diketopiperazine] skeleton, together with a known analogue neoechinulin B (3), were isolated from the deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122. Their structures were determined by spectroscopic analysis, single-crystal X-ray diffraction, specific rotation (SR), and NMR calculations. Compounds 1 and 2 exhibited significant in vivo proangiogenic activity in transgenic zebrafish.While the emerging field of vibrational polariton chemistry has the potential to overcome traditional limitations of synthetic chemistry, the underlying mechanism is not yet well understood. Here, we explore how the dynamics of unimolecular dissociation reactions that are rate-limited by intramolecular vibrational energy redistribution (IVR) can be modified inside an infrared optical cavity. We study a classical model of a bent triatomic molecule, where the two outer atoms are bound by anharmonic Morse potentials to the center atom coupled to a harmonic bending mode. We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with IVR and alter unimolecular dissociation reaction rates when the cavity mode acts as a reservoir for vibrational energy. These results lay the foundation for further theoretical work toward understanding the intriguing experimental results of vibrational polaritonic chemistry within the context of IVR.The self-assembly of polystyrene-block-poly(2-vinylpyridine) at the liquid/liquid interface has been systematically investigated to develop a series of primary morphologies of the aggregates. The block copolymers self-assembled into large areas of nanodot arrays, parallel nanostrands, layered films, parallel nanobelts, honeycomb monolayers, and foams by reacting with chloroauric acid, depending on the molecular structure of the block copolymers and the amount of chloroauric acid. The formation of the first four ordered structures resulted from interfacial adsorption and self-assembly, and nucleation and epitaxial growth. The latter two structures were attributed to the water hole templating effect and spontaneous interfacial emulsification, respectively. This work provides insight into the self-assembly behavior of block copolymers at the interface and provides a facile approach for fabricating functional structures.Some molecules of chemical and biological significance possess vibrations with significant Herzberg-Teller (HT) couplings, which render the Franck-Condon (FC) approximation inadequate and cause the breakdown of the well-known mirror-image symmetry between linear absorption and emission spectra. Using a model two-state system with displaced harmonic potential surfaces, we show analytically that the FC-HT interference gives rise to asymmetric intensity modification, which has the same sign for all transitions on one side of the 0-0 absorption line and the opposite sign in the equivalent fluorescence transitions, while the trend is exactly reversed for all transitions on the other side the 0-0 line. We examine the dependence of the absorption-emission asymmetry on the mode frequency, Huang-Rhys factor, and dipole moment parameters to show the recovery of symmetry with particular combinations of parameters and a crossover from fluorescence to absorption dominance. Etomoxir We illustrate the analytical predictions through numerically exact calculations in models of one and two discrete vibrational modes and in the presence of a harmonic dissipative bath. In addition to homogeneous broadening effects, we identify large asymmetric shifts of absorption and emission band maxima, which can produce the illusion of unequal frequencies in the ground and excited potential surfaces as well as a nontrivial modulation of spectral asymmetry by temperature, which results from the enhancement of transitions on one side of the 0-0 line. These findings will aid the interpretation of experimental spectra in HT-active molecular systems.3-Alkyl-3-hydroxyoxindoles, a subclass of oxindole products, have antioxidant, neuroprotective, anticancer, and anti-HIV activities. In this study, a green and economical protocol for the synthesis of 3-alkyl-3-hydroxyoxindoles is developed for the first time via α-alkylation-α-hydroxylation of oxindole with benzyl alcohols without using any transition-metal catalysts in yields of 29-93%.Cell membrane proteins play a pivotal role in regulating intracellular signal transductions and cell behaviors. Many membrane proteins form clusters in order to initiate downstream signaling pathways for the modulation of cell behaviors. Developing rational methods to program the in situ clustering of designated membrane proteins on the cell surface to form large assemblies remains challenging. Here we use the membrane-anchored DNA hybridization chain reaction (HCR) to induce DNA self-assembly on the live cell surface and drive the unidirectional clustering of membrane proteins for the modulation of cell behaviors. Reactive DNA strands are specifically anchored onto the membrane proteins of interest by using DNA aptamers. Upon activation, the chain reaction between the protein-anchored DNA strands drives the assembly of membrane proteins forming one-dimensional clusters. We demonstrate both homogeneous and heterogeneous clustering of membrane proteins on multiple cell types that exhibit a potent capability for modulating cell behaviors including migration, proliferation, and survival.Monolayer PtSe2 holds great potential in extending 2D devices functionality, but their atomic-level-defect study is still limited. Here, we investigate the atomic structures of lattice imperfections from point to stretched 1D defects in 1T-PtSe2 monolayers, using annular dark-field scanning transmission electron microscopy (ADF-STEM). We show Se vacancies (VSe) have preferential sites with high beam-induced mobility. Diverse divacancies form with paired VSe. We found stretched linear defects triggered by dynamics of VSe that altered strain fields, distinct from the line vacancies in 2H-phase 2D materials. The paired VSe stability and formation possibility of vacancy lines are evaluated by density functional theory. Lower sputtering energy in PtSe2 than that in MoS2 can cause larger possibility of atomic loss compared to diffusion required for creating VSe lines. This provides atomic insights into the defects in 1T-PtSe2 and shows how a deviated 1D structure is embedded in a 2D system without losing atom lines.What happens at the ionic-liquid (IL)/water interface when the Eu3+ cation is complexed and extracted by bis(dimethyltriazinyl) pyridine “BTP” ligands has been investigated by molecular dynamics and potential of mean force simulations on the interface crossing by key species neutral BTP, its protonated BTPH+ form, Eu3+, and the Eu(BTP)33+ complex. At both the [BMI][Tf2N]/water and [OMI][Tf2N]/water interfaces, neither BTP nor Eu(BTP)33+ are found to adsorb. The distribution of Eu(BTP)23+ and Eu(BTP)3+ precursors of Eu(BTP)33+, and of their nitrate adducts, implies the occurrence of a stepwise complexation process in the interfacial domain, however. The analysis of the ionic content of the bulk phases and of their interface before and after extraction highlights the role of charge buffering by interfacial IL cations and anions, by different amounts depending on the IL. Comparison of ILs with octanol as the oil phase reveals striking differences regarding the extraction efficiency, the affinity of Eu(BTP)33+ for the interface, the effects of added nitric acid and of counterions (NO3- vs Tf2N-), charge neutralization mechanisms, and the extent of “oil” heterogeneity. Extraction into octanol is suggested to proceed via adsorption at the surface of water pools, nanoemulsions, or droplets, with marked counterion effects.Karrikins (KARs) have been identified as a class of smoke-derived plant growth regulators widely functioning among angiosperms. However, little is known about the mechanism by which these molecules trigger the relevant signal transduction. In this research, conventional molecular dynamics simulations were used to investigate the dynamical behavior of the apo- and holo-forms of the KAR receptor KAI2. The results show that the dynamic binding conformation of KAR1 in the active site is not completely consistent with that in the static crystal and is largely affected by the residue segment of the receptor, Tyr150-Asn180. The binding of the ligand with KAI2 changes the distribution of the electrostatic potential near the active site and drives the conformational transition of the Tyr150-Asn180 segment with strong internal positive correlation. A “dual induction” signaling mechanism is proposed in view of the present calculations. Our work paves way for in-depth understanding of the KAR signal transduction mechanism and sheds light on further experimental and theoretical exploration.Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are “too reactive to be selective”. Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.Little attention has been devoted to studying the pressures during the mesophase pitches carbonization processes and their effects on the as-produced carbon fibers’ mechanical properties. Herein, we study the pressure-enhanced graphitization of mesophase pitch and the promoted tensile stresses of the produced carbon fibers using full atomistic simulations based on reactive force fields. Results show that pressures increase the tensile stress of as-produced fibers by 3.7-11 times under 1-6 GPa isotropic compressing pressure. The highest tensile stress can reach 4.39 GPa in carbonized coal tar pitch at 4000 K under 6 GPa. In experimental work, the pressurized laser-processed mesophase pitch generates less gas and shows more ordered carbonized structures in Raman spectra. This work provides a fundamental understanding of the reaction mechanism of carbon fiber production under pressure, and also illustrates a promising method to manufacture mesophase pitch-based carbon fibers with exceptional mechanical properties.