Activity

  • Olsson Bruus posted an update 4 days, 4 hours ago

    In culture, ILC2s had doubling times of 21 h, a growth rate of 0.032 h-1 and could be sub-cultured in early or late phases of exponential growth. These studies form the basis for expanding ILC2 populations that will facilitate the study and potential applications of these rare cells under defined, serum-free conditions.Previously, we reported the isolation of a quorum quenching protein (QQ), designated GqqA, from Komagataeibacter europaeus CECT 8546 that is highly homologous to prephenate dehydratases (PDT) (Valera et al. in Microb Cell Fact 15, 88. https//doi.org/10.1186/s12934-016-0482-y , 2016). GqqA strongly interfered with N-acyl-homoserine lactone (AHL) quorum sensing signals from Gram-negative bacteria and affected biofilm formation in its native host strain Komagataeibacter europaeus. Here we present and discuss data identifying GqqA as a novel acylase. ESI-MS-MS data showed unambiguously that GqqA hydrolyzes the amide bond of the acyl side-chain of AHL molecules, but not the lactone ring. Consistent with this observation the protein sequence does not carry a conserved Zn2+ binding motif, known to be essential for metal-dependent lactonases, but in fact harboring the typical periplasmatic binding protein domain (PBP domain), acting as catalytic domain. We report structural details for the native structure at 2.5 Å resolution and for a truncated GqqA structure at 1.7 Å. The structures obtained highlight that GqqA acts as a dimer and complementary docking studies indicate that the lactone ring of the substrate binds within a cleft of the PBP domain and interacts with polar residues Y16, S17 and T174. The biochemical and phylogenetic analyses imply that GqqA represents the first member of a novel type of QQ family enzymes.Polymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.Organoboron compounds have been playing an increasingly important role in analytical chemistry, material science, health applications, and particularly as functional polymers like boron carriers for cancer therapy. There are two main applications of boron isotopes in radiation cancer therapy, Boron Neutron Capture Therapy and Proton Boron Fusion Therapy. In this study, a novel and original material consisting of a three-dimensional polymer network crosslinked with [Formula see text]B enriched boric acid molecules is proposed and synthesized. FK506 The effects of the exposition to thermal neutrons were studied analyzing changes in the mechanical properties of the proposed material. Dedicated Monte Carlo simulations, based on MCNP and FLUKA main codes, were performed to characterize interactions of the proposed material with neutrons, photons, and charged particles typically present in mixed fields in nuclear reactor irradiations. Experimental results and Monte Carlo simulations were in agreement, thus justifying further studies of this promising material.The bioremediation of beverage (treated and untreated) effluent was investigated in the current study by using the potential strains of Bacillus sp. (BK1) and Aspergillus sp. (BK2). Effluent was collected from the beverage industry (initial concentration of nitrogen were 3200 ± 0.5 mg/L and 4400 ± 0.6 mg/L whereas phosphorus were 4400 ± 2 mg/L and 2600 ± 1 mg/L in treated and untreated effluent correspondingly). Further, the BK1 and BK2 exhibited high removal competence after 1 week of incubation; BK1 removed phosphorus 99.95 ± 0.7% and BK2 95.69 ± 1% in treated effluent while nitrogen removed about 99.90 ± 0.4% by BK1 and 81.25 ± 0.8% by BK2 (initial concentration of phosphorus 4400 ± 2 mg/L and nitrogen 3200 ± 0.5 mg/L). Next, in the untreated effluent BK1 removed 99.81 ± 1% and BK2 99.85 ± 0.8% of phosphorus while removed nitrogen 99.93 ± 0.5% by BK1 and 99.95 ± 1.2% by BK2 correspondingly, (initial concentration of phosphorus 2600 ± 1 mg/L and nitrogen 4400 ± 0.6 mg/L). The physiochemical composition of smg/L and 20.565 ± 1 mg/L correspondingly). Next, total solids removed by BK1 and BK2 2.5 ± 0.3 mg/L and 1.6 ± 0.6 mg/L correspondingly in treated effluent whereas 5.5 ± 0.8 mg/L and 4.6 ± 0.6 mg/L in untreated effluent (initial concentration of treated and untreated effluent 5.6 ± 1.5 mg/L and 9.48 ± 1.2 mg/L correspondingly). Both the strains BK1 and BK2 are highly efficient in the nitrogen and phosphorus removal therefore this strain may be applied for the potential remediation.The characterization of observables, expressed via Hermitian operators, is a crucial task in quantum mechanics. For this reason, an eigensolver is a fundamental algorithm for any quantum technology. In this work, we implement a semi-autonomous algorithm to obtain an approximation of the eigenvectors of an arbitrary Hermitian operator using the IBM quantum computer. To this end, we only use single-shot measurements and pseudo-random changes handled by a feedback loop, reducing the number of measures in the system. Due to the classical feedback loop, this algorithm can be cast into the reinforcement learning paradigm. Using this algorithm, for a single-qubit observable, we obtain both eigenvectors with fidelities over 0.97 with around 200 single-shot measurements. For two-qubits observables, we get fidelities over 0.91 with around 1500 single-shot measurements for the four eigenvectors, which is a comparatively low resource demand, suitable for current devices. This work is useful to the development of quantum devices able to decide with partial information, which helps to implement future technologies in quantum artificial intelligence.Body image disturbance (BID) is a core feature of eating disorders, for which there are few objective markers. We examined the feasibility of a novel digital tool, “Somatomap”, to index BID related to anorexia nervosa (AN) severity. Fifty-five AN inpatients and 55 healthy comparisons (HC) outlined their body concerns on a 2-Dimensional avatar. Next, they indicated sizes/shapes of body parts for their current and ideal body using sliders on a 3-Dimensional avatar. Physical measurements of corresponding body parts, in cm, were collected for reference. We evaluated regional differences in BID using proportional z-scores to generate statistical body maps, and multivariate analysis of covariance to assess perceptual discrepancies for current body, ideal body, and body dissatisfaction. The AN group demonstrated greater regional perceptual inaccuracy for their current body than HC, greater discrepancies between their current and ideal body, and higher body dissatisfaction than HCs. AN body concerns localized disproportionately to the chest and lower abdomen. The number of body concerns and perceptual inaccuracy for individual body parts was strongly associated with Eating Disorder Examination Questionnaire (Global EDE-Q) scores across both groups. Somatomap demonstrated feasibility to capture multidimensional aspects of BID. Several implicit measures were significantly associated with illness severity, suggesting potential utility for identifying objective BID markers.Particulate autologous tooth roots are increasingly used for alveolar bone augmentation; however, the proteomic profile of acid dentin lysate and the respective cellular response have not been investigated. Here we show that TGF-β1 is among the 226 proteins of acid dentin lysate (ADL) prepared from porcine teeth. RNA sequencing identified 231 strongly regulated genes when gingival fibroblasts were exposed to ADL. Out of these genes, about one third required activation of the TGF-β receptor type I kinase including interleukin 11 (IL11) and NADPH oxidase 4 (NOX4). Reverse transcription-quantitative polymerase chain reaction and immunoassay confirmed the TGF-β-dependent expression of IL11 and NOX4. The activation of canonical TGF-β signaling by ADL was further confirmed by the phosphorylation of Smad3 and translocation of Smad2/3, using Western blot and immunofluorescence staining, respectively. Finally, we showed that TGF-β activity released from dentin by acid lysis adsorbs to titanium and collagen membranes. These findings suggest that dentin particles are a rich source of TGF-β causing a major response of gingival fibroblasts.Volatile organic compounds (VOCs) released through skin (transcutaneous gas) has been increasing in importance for the continuous and real-time assessment of diseases or metabolisms. For stable monitoring of transcutaneous gas, finding a body part with little interference on the measurement is essential. In this study, we have investigated the possibility of external ears for stable and real-time measurement of ethanol vapour by developing a monitoring system that consisted with an over-ear gas collection cell and a biochemical gas sensor (bio-sniffer). The high sensitivity with the broad dynamic range (26 ppb-554 ppm), the high selectivity to ethanol, and the capability of the continuous measurement of the monitoring system uncovered three important characteristics of external ear-derived ethanol with alcohol intake for the first time there is little interference from sweat glands to a sensor signal at the external ear; similar temporal change in ethanol concentration to that of breath with delayed peak time (avg. 13 min); relatively high concentration of ethanol relative to other parts of a body (external ear-derived ethanolbreath ethanol = 1590). These features indicated the suitability of external ears for non-invasive monitoring of blood VOCs.Cigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p  less then  0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p  less then  0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p  less then  0.