Activity

  • Krebs Martens posted an update 6 days, 13 hours ago

    Perovskite solar cells are used in silicon-based tandem solar cells due to their tunable band gap, high absorption coefficient and low preparation cost. However, the relatively large optical refractive index of bottom silicon, in comparison with that of top perovskite absorber layers, results in significant reflection losses in two-terminal devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. In this paper, nanoholes array filled with TiO2 is introduced into bottom cells design. By finite-difference time-domain methods, the absorption efficiency and photocurrent density in the range of 300-1100 nm has been analyzed, and the structural parameters have been also optimized. Our calculations show the photocurrent density which tends to be saturated with the increase in the height of the nanoholes. The absorption enhancement modes of photons at different wavelengths have been analyzed intuitively by the distribution of electric field. These results enable a viable and convenient route toward high efficiency design of perovskite/Si tandem solar cells.The development of an oral formulation that ensures increased bioavailability of drugs is a great challenge for pharmaceutical scientists. Among many oral formulation systems, a drug delivery system employing superporous networks was developed to provide a prolonged gastro-retention time as well as improved bioavailability of drugs with a narrow absorption window in the gastrointestinal tract. Superporous networks (SPNs) were prepared from chitosan by crosslinking with glyoxal and poly(vinyl alcohol) (PVA). The SPNs showed less porosity and decreased water uptake with an increase in the crosslinking density and content of PVA. Gastro-retentive tablets (GRTs) were formulated using hydroxypropyl methylcellulose (HPMC, a hydrophilic polymer) and the prepared SPNs. Ascorbic acid (AA), which is mainly absorbed in the proximal part of the small intestine, was selected as a model drug. The formulated GRTs exhibited no floating lag time and stayed afloat until the end of the dissolution test. The in vitro drug release from the GRTs decreased with a decrease in the water uptake of the SPNs. The profile of drug release from the GRTs corresponded to the first-order and Higuchi drug-release models. Overall, floating tablets composed of the SPNs and HPMC have potential as a favorable platform to ensure sustained release and improved bioavailability of drugs that are absorbed in the proximal part of the small intestine.

    Compared to other racial/ethnic groups, U.S. Vietnamese have higher Hepatitis B infection prevalence, which is a major liver cancer risk factor. Increased testing could reduce this disparity. It is critical to understand subgroups of U.S. Vietnamese least likely to have been tested for Hepatitis B and design appropriate interventions. We examined healthcare- and acculturation-related factors influencing Hepatitis B testing among U.S. Vietnamese.

    Survey data of 100 U.S. Vietnamese attending health fairs/programs hosted by community-based organizations (2017-2018) were analyzed. Healthcare-related predictors included insurance and past 2-year checkup. Acculturation-related predictors included Vancouver Acculturation Index, percentage of lifetime in the U.S., and Vietnamese and English fluency. We conducted a multiple logistic regression controlling for age, sex, education, and household income.

    The sample was an average 37.5years old and 61.6% female. Insurance coverage was reported by 83.0%. Average percns can be a strategy to increase Hepatitis B testing among U.S. Vietnamese. More education regarding Hepatitis B (e.g., via community-based, culturally-appropriate, lay health worker-led programs) is needed to ensure that individuals are aware of their testing status and pursue appropriate healthcare decisions.

    Currently, there are no reports of diaphyseal femoral fracture equivalent to atypical femoral fractures (AFFs) in patients receiving long-term hemodialysis (HD).

    A 56-year-old Japanese man receiving long-term HD for 34years was admitted to our hospital due to a delay in postoperative healing. The patient began maintenance hemodialysis at 22years of age. The patient then underwent surgical parathyroidectomy (PTX) for secondary hyperparathyroidism at 43years of age, which resulted in decreased levels of parathyroid hormone (PTH). Thereafter, this patient’s serum 1,25(OH)

    D

    level was very low because active vitamin D

    derivative was not administered. At 54years of age, a transverse fracture of the femoral shaft equivalent to AFF occurred. Surgery with open reduction and internal fixation using intramedullary nailing was performed; however, the delay of postoperative healing continued for 16months. A left iliac crest bone biopsy was performed and showed osteoid-like lesion and an increase of woven bone. of PTH may induce a higher osteoid state and an increase of woven bone, which may then attribute to the development of diaphyseal femoral fracture and impairment of postoperative bone healing. It is hypothesized that treatment with active vitamin D3 and teriparatide acetate may be a therapeutic option via the accelerated formation of lamellar bone for refractory diaphyseal femoral fracture of long-term dialysis.Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. find more Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.Digestive tract measurements are often considered species specific, but little information exists on the degree to which they change during ontogeny within a species. link2 Additionally, access to anatomical material from nondomestic species is often limited, with fixed tissues possibly representing the only available source, though the degree to which this material is representative in terms of dimensions and weight is debatable. In the present study, the macroscopic anatomy of the digestive tract (length of intestinal sections, and tissue weights of stomach and intestines) of 58 Lemur catta [ranging in age from 1 month (neonates) to 25 years], which had been stored frozen (n = 27) or fixed in formalin (n = 31), was quantified. Particular attention was paid to the caecum and the possible presence of an appendix. The intraspecific allometric scaling of body mass (BM)0.46[0.40;0.51] for total intestine length and BM0.48[0.41;0.54] for small intestine length was higher than the expected geometric scaling of BM0.33, and similar to that reported in the literature for interspecific scaling. This difference in scaling is usually explained by the hypothesis that, to maintain optimal absorption, the diameter of the intestinal tube cannot increase geometrically. link3 Therefore, geometric volume gain of increasing body mass is accommodated for by more-than-geometric length scaling. According to the literature, not all L. catta have an appendix. No appendix was found in the specimens in the present study. The proportions of length measurements did not change markedly during ontogeny, indicating that the proportions of the foetus are representative of those of the adult animal. By contrast, width and tissue-mass scaling of the caecum indicated disproportionate growth of this organ during ontogeny that was not reflected in its length. Compared to overall intraspecific variation, the method of storage (frozen vs. formalin) had no relevant impact on length or weight measurements.Degenerative disc disease is a significant reason for low back pain. Low-level laser irradiation (LLLI) of cartilage results in its reshaping and combines with regenerative reaction. A certain pattern of lumbar disc irradiation induces healing reaction and formation of new cartilage. Quantitative MRI analysis of regenerative response of the cartilage is the subject of this investigation. Fifty-one lumbar discs of 28 patients with discogenic low back pain underwent irradiation with 1.56-μm Er fiber laser (1.2 W). Quantitative MRI analysis is performed in STIR regime within 0.93-14.80 months. Signal intensity is estimated from irradiated discs and control measured from adjacent non-irradiated discs and vertebral bones. T2 WI follow-up is performed within a long period (up to 5 years) in selected cases. The mean value of MRI signal intensity from the irradiated discs increased by 14% (p  less then  0.001). The control bone measurement revealed no difference in signal intensity (p = 0.83). The adjacent non-irradiated discs slightly increased their signal (p  less then  0.05). T2 WI follow-up within 5 years revealed a steady increase of the signal and the irradiated discs healing. LLLI of degenerated intervertebral discs by 1.56-μm Er fiber laser produces increase of MRI disc signal within the first year after treatment that confirms regenerative response of the disc and could lay in the basis of clinical improvement. Further assessment on the effect is mandatory.The enhanced release of inflammatory cytokines mediated by high mobility group box1 (HMGB1) leads to pain sensation, and has been implicated in the etiology of inflammatory pain. Paeonol (PAE), a major active phenolic component in Cortex Moutan, provides neuroprotective efficacy via exerting anti-inflammatory effect. However, the role and mechanism of PAE in inflammatory pain remain to be fully clarified. In this study, we showed that PAE treatment significantly ameliorated mechanical and thermal hyperalgesia of mice induced by complete Freund’s adjuvant (CFA). The analgesic effect of PAE administration was associated with suppressing the enhanced expression of HMGB1 as well as the downstream signaling molecules including toll-like receptor 4 (TLR4), the nuclear NF-κB p65, TNF-α and IL-1β after CFA insult in the anterior cingulate cortex (ACC), a key brain region responsible for pain processing. Furthermore, inhibition of HMGB1 activity by glycyrrhizin (GLY), an HMGB1 inhibitor, alleviated CFA-induced pain and also facilitated PAE-mediated analgesic effect in mice along with the decreased expression of TLR4, NF-κB p65, TNF-α and IL-1β upon CFA injury.