Activity

  • Winkel Husted posted an update 6 days, 23 hours ago

    The correlations were poor, with R 2 = 0.3657 for ORAC hydro, R 2 = 0.2794 for ORAC lipo, and R 2 = 0.6929 for FRAP. The poor correlation between the overall catechin content and the experimental ORAC values in tea infusions was previously reported in the literature. The present study directly calculated the expected ORAC index from individual antioxidant components and reached the same result of poor correlation. Omaveloxolone supplier For FRAP values, no comparison was previously reported in the literature. The poor correlations were not well explained, indicating that the cause of the antioxidant character of tea is more complex than simply produced by the main catechins.The search for suitable strategies to manufacture self-healable nitrile rubber (NBR) composites is the most promising part in the industrial field of polar rubber research. In recent years, some important strategies, specifically, metal-ligand coordination bond formation, ionic bond formation, and dynamic hydrogen bond formation, have been utilized to develop duly self-healable NBR composites. This paper reviews the continuous advancement in the research field related to self-healable NBR composites by considering healing strategies and healing conditions. Special attention is given to understand the healing mechanism in reversibly cross-linked NBR systems. The healing efficiency of a cross-linked NBR network is usually dependent on the definite interaction between functional groups of NBR and a cross-linking agent. Finally, the results obtained from successful studies suggest that self-healing technology has incredible potential to increase the sustainability and lifetime of NBR-based rubber products.The purpose of this study was to determine the types, proportions, and energies of secondary particle interactions in a Compton camera (CC) during the delivery of clinical proton beams. The delivery of clinical proton pencil beams ranging from 70 to 200 MeV incident on a water phantom was simulated using Geant4 software (version 10.4). The simulation included a CC similar to the configuration of a Polaris J3 CC designed to image prompt gammas (PGs) emitted during proton beam irradiation for the purpose of in vivo range verification. The interaction positions and energies of secondary particles in each CC detector module were scored. For a 150-MeV proton beam, a total of 156,688(575) secondary particles per 108 protons, primarily composed of gamma rays (46.31%), neutrons (41.37%), and electrons (8.88%), were found to reach the camera modules, and 79.37% of these particles interacted with the modules. Strategies for using CCs for proton range verification should include methods of reducing the large neutron backgrounds and low-energy non-PG radiation. The proportions of interaction types by module from this study may provide information useful for background suppression.We propose a forward-backward splitting algorithm to integrate deep learning into maximum-a-posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual learning unit (using convolutional-neural networks) were considered. For the latter, our proposed forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled into a recurrent-neural network in which network parameters (including regularization strength) are shared across all states and learned during PET reconstruction. Our network was trained and evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a comparable performance, on average, 14.4% and 13.4% normalized root-mean square error (NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a comparable performance to a representative implementation of the FBSEM net.

    The role of humoral immunity has been well established in reducing infection risk and facilitating viral clearance in patients with COVID-19. However, the relationship between specific antibody responses and severity of COVID-19 is less well understood.

    To address this question and identify gaps in knowledge, we utilized the methodology of a scoping review to interrogate risk of infection and clinical outcomes of COVID-19 in patients with iatrogenic and inborn humoral immunodeficiency states based on existing literature.

    Among patients with iatrogenic B-cell depletion, particularly with agents targeting CD20, our analysis found increased risk of severe COVID-19 and death across a range of underlying disease states. Among patients with humoral inborn errors of immunity with COVID-19, our synthesis found that patients with dysregulated humoral immunity, predominantly common variable immunodeficiency (CVID), may be more susceptible to severe COVID-19 than patients with humoral immunodeficiency states due to X-linked agammaglobulinemia and other miscellaneous forms of humoral immunodeficiency. There were insufficient data to appraise the risk of COVID-19 infection in both populations of patients.

    Our work identifies potentially significant predictors of COVID-19 severity in patients with humoral immunodeficiency states and highlights the need for larger studies to control for clinical and biologic confounders of disease severity.

    Our work identifies potentially significant predictors of COVID-19 severity in patients with humoral immunodeficiency states and highlights the need for larger studies to control for clinical and biologic confounders of disease severity.