Activity

  • Hodge Pickett posted an update 4 hours, 39 minutes ago

    Background and objectives A deeper comprehension of the role that environmental risk factors play in the development of adolescent Bipolar Disorder (BD), as well as in the evolution of high-risk states for BD, may entangle further prevention and treatment advances. The present systematic review is aimed at critically summarizing evidence about the role that environmental risk factors play in the development of BD in adolescence and their interaction with BD high-risk states. Materials and Methods MEDLINE/Pubmed, Scopus and Web of Science datasets were systematically searched until 4 September 2020. Original studies that reported information about the role of environmental risk factors in the development of BD during adolescence, or assessing their influence on the development of psychopathology in high-risk states for BD, were considered for inclusion. Two blind researchers performed title/abstract, full-text screening, and hand-screening of relevant references. The risk of bias was assessed by means of the Newcastle-Ottawa Scale. Results Fourteen studies were included in the review. Negative stressful life events, particularly sexual and physical abuse, but also emotional mistreatment, were associated with more severe psychopathology in adolescents with BD, as well as with higher risk for developing mood disorders in BD offspring. Similar findings were detected for familial environment-related features, such as parental rejection and low perceived care, while no univocal results were found when analyzing familial functioning. Conclusions The present systematic review confirmed the relevant role that environmental risk factors, particularly negative stressful live events and family-related features, play in the development of BD psychopathology during adolescence. Future studies are expected to clarify possible further environmental factors that may be implicated in the development of BD during youth that may serve as target of prevention and early treatment strategies.A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.The COVID-19 epidemic has crashed on the social and economic stability of China and even the world, and raised the question how has the Chinese government done with public health in recent years? The purpose of this paper is to clarify the definition and items of Chinese public-health expenditure, then to objectively evaluate the Chinese government’s performance, so as to help the government to perform better in public health. To achieve this goal, we measure the Chinese public-health expenditure at national and provincial levels based on our definition, and then compare it with the expenditures of other countries. The results show that (1) the level of public-health expenditure in China is relatively low and far lower than that in developed countries; (2) Chinese governments have not paid enough attention to the prevention and control of major public-health emergencies, which may be an important reason for the outbreak of COVID-19; (3) Chinese public-health expenditure shows a fluctuating growth trend, but the growth rate is so slow that it is lower than that of GDP and fiscal expenditure; (4) although the Chinese government inclines the public-health expenditure to the poor provinces in central and western regions, the imbalance and inequity of public-health resource allocation are still expanding among provinces; (5) there is a lot of waste of resources in the public-health system, which seriously reduces the efficiency of public-health expenditure in China. Therefore, the Chinese government should improve the quantity and quality of public-health expenditure in the above aspects.The paper investigated the torrefaction of cones from three tree species Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.), and European larch (Larix decidua Mill.). The objective was to determine the effects of torrefaction temperature on the properties of cones with a view to their further use as a renewable energy source. Torrefaction was conducted at 200, 235, 275, and 320 °C for 60 min under an inert gas atmosphere. Elemental composition, ash content, and lower heating value (LHV) were measured for the original and torrefied samples. Torrefaction performance was evaluated using formulas for solid yield, higher heating value (HHV), HHV enhancement factor, as well as energy yield. Scanning electron microscopy (SEM) was used to assess elemental composition and structural changes at the surface of the torrefied material. For all the studied conifer species, the higher the torrefaction temperature, the greater the carbon and ash content and the higher the LHV (a maximum of 27.6 MJ·kg-1 was recorded for spruce and larch cones torrefied at 320 °C). SEM images showed that an increase in process temperature from 200 to 320 °C led to partial decomposition of the scale surface as a result of lignin degradation. Cone scales from all tree species revealed C, O, N, Mg, K, and Si at the surface (except for pine scales, which did not contain Si). Furthermore, the higher the temperature, the higher the enhancement factor and the lower the energy yield of the torrefied biomass. Under the experimental conditions, spruce cones were characterized by the lowest weight loss, the highest HHV, and the highest energy yield, and so they are deemed the best raw material for torrefaction among the studied species.In recent years, there has been an increasing interest toward the covalent binding of bioactive peptides from extracellular matrix proteins on scaffolds as a promising functionalization strategy in the development of biomimetic matrices for tissue engineering. A totally new approach for scaffold functionalization with peptides is based on Molecular Imprinting technology. In this work, imprinted particles with recognition properties toward laminin and fibronectin bioactive moieties were synthetized and used for the functionalization of biomimetic sponges, which were based on a blend of alginate, gelatin, and elastin. Functionalized sponges underwent a complete morphological, physicochemical, mechanical, functional, and biological characterization. Micrographs of functionalized sponges showed a highly porous structure and a quite homogeneous distribution of imprinted particles on their surface. Infrared and thermal analyses pointed out the presence of interactions between blend components. Biodegradation and mechanical properties appeared adequate for the aimed application. The results of recognition tests showed that the deposition on sponges did not alter the specific recognition and binding behavior of imprinted particles. In vitro biological characterization with cardiac progenitor cells showed that early cell adherence was promoted. In vivo analysis showed that developed scaffolds improved cardiac progenitor cell adhesion and differentiation toward myocardial phenotypes.The 9th meeting of Advances Against Aspergillosis in beautiful Lugano, Switzerland clearly had the most drama of any of the previous meetings, exceeding even the 1st one, in San Francisco, when we, the Co-Organizers, weren’t sure that although we had a great educational idea, and had put together a great list of speakers and topics, we might have few attendees, and go bankrupt! (The story of the birth efforts in initiating these meetings is described, for the historical record […].We present a computational study on the enantioselectivity of organocatalytic proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking and formation. Our condensed phase simulation results are able to nicely reproduce the experimental findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of the change in synanti product ratio with different substituents. Furthermore, we give a microscopic explanation for the selectivity. We show that both the explicit description of the solvent and the inclusion of entropic effects are vital to a good outcome-metadynamics simulations in vacuum and static nudged elastic band (NEB) calculations yield significantly worse predictions when compared to the experiment. The approach described here can be applied to a plethora of other enantioselective or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the highest stereoselectivity.Hypereutectic Al-Si alloys are attractive materials in the fields of electronic packaging and aerospace. A Bi2O3-ZnO-B2O3 system lead-free brazing filler glass was employed to braze hypereutectic Al-50Si alloys in air. The hypereutectic Al-50Si alloys were pre-oxidized and the low-temperature glass powder was flake-shaped in the brazing process. The effects of brazing temperature and time on joints microstructure evolution, resulting mechanical strength, and air tightness were systematically investigated. The results indicated that the maximum shear strength of the joint was 34.49 MPa and leakage rate was 1.0 × 10-10 Pa m3/s at a temperature of 495 °C for 30 min. Crystalline phases, including Bi24B2O39 and Bi2O3, were generated in the glass joint. The formation of a diffusion transition layer with a thickness of 3 μm, including elements of Al, Si, Zn, Bi, Na, and B, was the key to form an effective joint. B022 supplier The elements of Al, Si, and Bi had a short diffusion distance while the elements of Zn, Na, and B diffused in a long way under brazing condition.Human genomes contain about 100,000 LINE-1 (L1) retroelements, of which more than 100 are intact. L1s are normally tightly controlled by epigenetic mechanisms, which often fail in cancer. In bladder urothelial carcinoma (UC), particularly, L1s become DNA-hypomethylated, expressed and contribute to genomic instability and tumor growth. It is, however, unknown which individual L1s are activated. Following RNA-immunoprecipitation with a L1-specific antibody, third generation nanopore sequencing detected transcripts of 90 individual elements in the VM-Cub-1 UC line with high overall L1 expression. In total, 10 L1s accounted for >60% of the reads. Analysis of five specific L1s by RT-qPCR revealed generally increased expression in UC tissues and cell lines over normal controls, but variable expression among tumor cell lines from bladder, prostate and testicular cancer. Chromatin immunoprecipitation demonstrated active histone marks at L1 sequences with increased expression in VM-Cub-1, but not in a different UC cell line with low L1 expression.