Activity

  • Roth Caldwell posted an update 5 days, 4 hours ago

    CXCR4 and its ligand CXCL12 were markedly upregulated upon induction of GBC proliferation during injury-induced regeneration. in vivo overexpression of CXCL12 did downregulate CXCR4 levels, which results in reduced GBC maintenance and neuronal differentiation. We proved that these effects were caused by CXCR4 downregulation rather than over-activation by showing that the phenotypes of CXCL12-overexpressing mice were highly similar to the phenotypes of CXCR4 knockout mice. Our results demonstrate functional CXCR4 signaling in GBCs regulates cell cycle exit and neural differentiation. We propose that CXCR4/CXCL12 signaling is an essential regulator of olfactory neurogenesis and provide new insights into the dynamics of neurogenesis in the OE.

    Gamma-band auditory steady-state response (ASSR) is a neurophysiologic index that is increasingly used as a translational biomarker in the development of treatments of neuropsychiatric disorders. While gamma-band ASSR is generated by distributed networks of highly interactive temporal and frontal cortical sources, the majority of human gamma-band ASSR studies using electroencephalography (EEG) highlight activity from only a single frontocentral scalp site, Fz, where responses tend to be largest and reductions in schizophrenia patients are most evident. However, no previous study has characterized the relative source contributions to Fz, which is a necessary step to improve the concordance of preclinical and clinical EEG studies.

    A novel method to back-project the contributions of independent cortical source components was applied to assess the independent sources and their proportional contributions to Fz as well as source-resolved responses in 432 schizophrenia patients and 294 healthy subjects.

    Indepe measuring dissociable and homologous biomarker targets in future translational studies.Nature will always be an endless source of bioinspiration for man-made smart materials and multifunctional devices. Impressively, even cutoff leaves from resurrection plants can autonomously and reproducibly change their shape upon humidity changes, which goes along with total recovery of their mechanical properties after being completely dried. In this work, simple bilayers are presented as autonomously moving, humidity-triggered bending actuators. The bilayers-showing reproducible bending behavior with reversible kinematics and multiway behavior-are studied in terms of their mechanical behavior upon humidity changes. The active layer consists of a highly conducting polymer film based on poly(3,4-ethylenedioxythiophene)poly(styrene sulfonate) (PEDOTPSS) with poly(dimethylsiloxane) (PDMS) as passive layer. The response to humidity is explored with dynamic mechanical thermal analysis and quartz crystal microbalance measurements. Introduction of a composite beam model allows to predict the curvature of the actuators with input from the rheological measurements. It is clearly demonstrated that volumetric strain and Young’s modulus, both heavily influenced by the water uptake, dominate the bending behavior and therefore the curvature of the actuators. This loop of rheological characterization coupled with an analytical model allows to predict curvatures of in principle any complex geometry and material combination for moving parts in soft robotics.

    We aimed to characterize associations between diet and the gut microbiome and short chain fatty acid (SCFA) products in youth with islet autoimmunity or type 1 diabetes (IA/T1D) in comparison with controls.

    Eighty participants (25 diagnosed with T1D, 17 with confirmed IA, 38 sibling or unrelated controls) from the Australian T1D Gut Study cohort were studied (median [IQR] age 11.7 [8.9, 14.0] years, 43% female). A Food Frequency Questionnaire characterized daily macronutrient intake over the preceding 6 months. Plasma and fecal SCFA were measured by gas chromatography; gut microbiome composition and diversity by 16S rRNA gene sequencing.

    A 10 g increase in daily carbohydrate intake associated with higher plasma acetate in IA/T1D (adjusted estimate +5.2 (95% CI 1.1, 9.2) μmol/L p = 0.01) and controls (adjusted estimate +4.1 [95% CI 1.7, 8.5] μmol/L p = 0.04). A 5 g increase in total fat intake associated with lower plasma acetate in IA/T1D and controls. A 5% increase in noncore (junk) food intake associated with reduced richness (adjusted estimate -4.09 [95%CI -7.83, -0.35] p = .03) and evenness (-1.25 [95% CI -2.00, -0.49] p < 0.01) of the gut microbiome in IA/T1D. Fiber intake associated with community structure of the microbiome in IA/T1D.

    Modest increments in carbohydrate and fat intake associated with plasma acetate in all youth. Increased junk food intake associated with reduced diversity of the gut microbiome in IA/T1D alone. These associations with the gut microbiome in IA/T1D support future efforts to promote SCFA by using dietary interventions.

    Modest increments in carbohydrate and fat intake associated with plasma acetate in all youth. Increased junk food intake associated with reduced diversity of the gut microbiome in IA/T1D alone. These associations with the gut microbiome in IA/T1D support future efforts to promote SCFA by using dietary interventions.Converting CO2 and H2 O into carbon-based fuel by IR light is a tough task. Herein, compared with other single-component photocatalysts, the most efficient IR-light-driven CO2 reduction is achieved by an element-doped ultrathin metallic photocatalyst-Ni-doped CoS2 nanosheets (Ni-CoS2 ). The evolution rate of CH4 over Ni-CoS2 is up to 101.8 μmol g-1  h-1 . The metallic and ultrathin nature endow Ni-CoS2 with excellent IR light absorption ability. The PL spectra and Arrhenius plots indicate that Ni atoms could facilitate the separation of photogenerated carriers and the decrease of the activation energy. Moreover, in situ FTIR, DFT calculations, and CH4 -TPD reveal that the doped Ni atoms in CoS2 could effectively depress the formation energy of the *COOH, *CHO and desorption energy of CH4 . This work manifests that element doping in atomic level is a powerful way to control the reaction intermediates, providing possibilities to realize high-efficiency IR-light-driven CO2 reduction.

    ILNEB constitute an autosomal recessive disorder caused by homozygous or compound heterozygous mutation of the gene for the ITGA3. To date, 8 ILNEB patients have been reported, but all 6 neonatal-onset ILNEB patients suffered early death within 2years. The most common cause of death among previously reported ILNEB patients was exacerbation of the respiratory condition.

    In this study, we describe a case of ILNEB with neonatal onset in a female patient and the genetic and histopathological testing performed.

    Our patient had a compound heterozygous mutation in ITGA3. Compared to previously reported patients, this patient exhibited milder clinical and histopathological characteristics. After experiencing a life-threatening respiratory infection at 8months old, the patient started periodic subcutaneous immunoglobulin treatment once every 1-2weeks for nephrotic-range proteinuria-induced secondary hypogammaglobulinemia. At the age of 3years, proteinuria gradually increased with severe edema despite strict internal management. Therefore, our patient underwent unilateral nephrectomy and insertion of a peritoneal dialysis catheter followed by another unilateral nephrectomy. One month later, she underwent an ABO-compatible living-donor kidney transplantation at the age of 4years.

    Our patient is a neonatal-onset ILNEB patient who survived for more than 2years and underwent successful kidney transplantation.

    Our patient is a neonatal-onset ILNEB patient who survived for more than 2 years and underwent successful kidney transplantation.The colloidal synthesis of a new type of lead-free halide quadruple-perovskite nanocrystals (NCs) is reported. The photoluminescence quantum yield and charge-carrier lifetime of quadruple-perovskite NCs can be enhanced by 96 and 77-fold, respectively, via metal alloying. Study of charge-carrier dynamics provide solid demonstrate that the PL enhancement is due to the elimination of ultrafast (1.4 ps) charge-carrier trapping processes in the alloyed NCs. Thanks to the high crystallinity, low trap-state density, and long carrier lifetime (193.4 μs), the alloyed quadruple-perovskite NCs can serve as the active material for high-performance photodetectors, which exhibit high responsivity (up to 0.98 × 104 A W-1 ) and an external quantum efficiency (EQE) of 3 × 106 %. These numbers are among the highest for perovskite-NC-based photodetectors.In conventional theories, topological band properties are intrinsic characteristics of the bulk material and do not depend on the choice of the reference frame. In this scenario, the principle of bulk-edge correspondence can be used to predict the existence of edge states between topologically distinct materials. In this study, a 2D elastic phononic plate is proposed with a Kekulé-distorted honeycomb pattern engraved on it. It is found that the pseudospin and the pseudospin-dependent Chern numbers are not invariant properties, and the ℤ 2 number is no longer a sufficient indicator to examine the existence of the edge state. this website The distinctive pseudospin texture and the pseudomagnetic field are also revealed. Finally, the synthetic helical edge states are successfully devised and experimentally implemented on a dislocation interface connecting two subdomains with bulk pattern identical up to a relative translation. The edge state is also imaged via laser vibrometry.

    Thiopurines are often used in combination with mesalazine for the treatment of ulcerative colitis (UC). Mesalazine formulations are delivered to the digestive tract by various delivery systems and absorbed as 5-aminosalicylic acid (5-ASA). 5-ASA is known to inhibit thiopurine S-methyltransferase (TPMT) activity and to affect thiopurine metabolism. There have been no studies comparing TPMT inhibition by multimatrix mesalazine (MMX) with other formulations. We investigated the difference in TPMT inhibition by different mesalazine formulations and prospectively confirmed the clinical relevance.

    Plasma concentrations of 5-ASA, N-acetyl-5-aminosalicylic acid (N-Ac-5-ASA), and TPMT activities were measured in UC patients receiving various mesalazine formulations (time-dependent or pH-dependent mesalazine or MMX) as monotherapy. Patients already on both time-dependent or pH-dependent mesalazine and thiopurines switched their mesalazine to MMX, examining 6-thioguanine nucleotide (6-TGN) and 6-methylmercaptopurinem time-dependent mesalazine to MMX may lead to an increase of 6-MMP/6-TGN, which may reduce the clinical effectiveness of thiopurines, warranting close monitoring after switch.Angiosarcoma of the thyroid is a rare and aggressive primary malignant tumour of the thyroid. We report the case of a 69-year-old woman who presented with a red and sore skin area at the right-anterior region of the neck. Ultrasound examination and computed tomography scan showed a non-homogeneous mass in the right thyroid lobe. Fine needle aspiration cytology was suggestive of atypical vascular proliferation and so the patient underwent right thyroid lobectomy. The specimen measured 6 × 5 × 2.5 cm, and a reddish nodule was found, including a whitish central area of maximum 4 cm in diameter. Immunohistochemistry showed CD31 and ERG positivity, while thyroglobulin, calcitonin and TTF-1 expression were negative, indicating a diagnosis of angiosarcoma.