Activity

  • Reimer Kloster posted an update 1 week ago

    In this paper, we focus on the problem of locating a scuba diver in distress using a sensor network. Without GPS reception, submerged divers in distress will transmit SOS messages using underwater acoustic communication. The study goal is to enable the quick and reliable location of a diver in distress by his fellow scuba divers. To this purpose, we propose a distributed scheme that relies on the propagation delay information of these acoustic SOS messages in the scuba divers’ network to yield a range and bearing evaluation to the diver in distress by any neighboring diver. We formalize the task as a non-convex, multi-objective graph localization constraint optimization problem. The solution finds the best configuration of the nodes’ graph under constraints in the form of upper and lower bounds derived from the inter-connections between the graph nodes/divers. Considering the need to rapidly propagate the SOS information, we flood the network with the SOS packet, while also using rateless coding to leverage information from colliding packets, and to utilize time instances when collisions occur for propagation delay evaluation. Numerical results show a localization accuracy on the order of a few meters, which contributes to quickly locating the diver in distress. Similar results were demonstrated in a controlled experiment in a water tank, and by playback data from a sea experiment for five network topologies.To date, there is no severe acute respiratory syndrome coronavirus 2-(SARS-CoV-2)-specific prognostic biomarker available. We assessed whether SARS-CoV-2 cycle threshold (Ct) value at diagnosis could predict novel CoronaVirus Disease 2019 (COVID-19) severity, clinical manifestations, and six-month sequelae. Hospitalized and outpatient cases were randomly sampled from the diagnoses of March 2020 and data collected at 6 months by interview and from the regional database for COVID-19 emergency. Patients were stratified according to their RNA-dependent-RNA-polymerase Ct in the nasopharyngeal swab at diagnosis as follows Group A ≤ 20.0, 20.0 28.0. Disease severity was classified according to a composite scale evaluating hospital admission, worst oxygen support required, and survival. Two hundred patients were included, 27.5% in Groups A and B both, 45.0% in Group C; 90% of patients were symptomatic and 63.7% were hospitalized. The median time from COVID-19 onset to swab collection was five days. Lethality, disease severity, type, and number of signs and symptoms, as well as six-month sequelae distributed inversely among the groups with respect to SARS-CoV-2 Ct. After controlling for confounding, SARS-CoV-2 Ct at diagnosis was still associated with COVID-19-related death (p = 0.023), disease severity (p = 0.023), number of signs and symptoms (p less then 0.01), and presence of six-month sequelae (p less then 0.01). Early quantification of SARS-CoV-2 may be a useful predictive marker to inform differential strategies of clinical management and resource allocation.Metallic nanomesh, one of the emerging transparent conductive film (TCF) materials with both high electrical conductivity and optical transmittance, shows great potential to replace indium tin oxide (ITO) in optoelectronic devices. However, lithography-fabricated metallic nanomeshes suffer from an iridescence problem caused by the optical diffraction of periodic nanostructures, which has negative effects on display performance. In this work, we propose a novel approach to fabricate large-scale metallic nanomesh as TCFs on flexible polyethylene terephthalate (PET) sheets by maskless phase separation lithography of polymer blends in a low-cost and facile process. Polystyrene (PS)/polyphenylsilsequioxane (PPSQ) polymer blend was chosen as resist material for phase separation lithography due to their different etching selectivity under O2 reactive ion etching (RIE). find more The PS constituent was selectively removed by O2 RIE and the remained PPSQ nanopillars with varying sizes in random distribution were used as masks for further pattern transfer and metal deposition process. Gold (Au) nanomeshes with adjustable nanostructures were achieved after the lift-off step. Au nanomesh exhibited good optoelectronic properties (RS = 41 Ω/sq, T = 71.9%) and non-iridescence, without angle dependence owing to the aperiodic structures of disordered apertures. The results indicate that this Au nanomesh has high potential application in high-performance and broad-viewing-angle optoelectronic devices.Whole-directional scanning methodology is required to observe distinctive features of an entire physical structure with a three dimensional (3D) visualization. However, the implementation of whole-directional scanning is challenging for conventional optical coherence tomography (OCT), which scans a limited portion of the sample by utilizing unidirectional and bidirectional scanning methods. Therefore, in this paper an integrated quad-scanner (QS) strategy-based OCT method was implemented to obtain the whole-directional volumetry of a sample by employing four scanning arms installed around the sample. The simultaneous and sequential image acquisition capabilities are the conceptual key points of the proposed QS-OCT method, and were implemented using four precisely aligned scanning arms and applied in a complementary way according to the experimental criteria. To assess the feasibility of obtaining whole-directional morphological structures, a roll of Scotch tape, an ex vivo mouse heart, and kidney specimens were imaged and independently obtained tissue images at different directions were delicately merged to compose the 3D volume data set. The results revealed the potential merits of QS-OCT-based whole-directional imaging, which can be a favorable inspection method for various discoveries that require the dynamic coordinates of the whole physical structure.The design of polymers from renewable resources with recycling potential comes from economic and environmental problems. This work focused on the impact of disulphide bonds in the dicarboxylic acids reactions with three epoxidized vegetable oils (EVOs). For the first time, the comparison between aromatic vs. aliphatic dicarboxylic acids, containing or not S-S bonds with EVOs was discussed and evaluated by dynamic scanning calorimetry. The obtained thermosets showed reprocessability, by the dual dynamic exchange mechanism. The virgin and reprocessed materials were characterized and the thermomechanical properties were compared. The thermosets derived from EVOs with high epoxy content combined with aromatic diacids containing disulphide bridges showed high glass transition values (~111 °C), high crosslink densities and good solvent stability.