Activity

  • Schneider Udsen posted an update 1 week ago

    Decreased mitochondrial membrane potential (MMP) activity and reduced glutathione (GSH) level show their role in P2Y1R-HIC mediated apoptosis. These in silico and in vitro results confirmed that HIC could induce mitochondrial apoptotic signaling through the P2Y1R activation. Thus, HIC being a potential ligand upon interaction with P2Y1R might have therapeutic value for the treatment of prostate cancer.This study investigates the presence of arsenic (As) and lead (Pb) in groundwater and their spatial distribution in Ban Khai District, Rayong Province, Thailand. Forty groundwater samples were collected at different locations in the dry and wet seasons during March and August of 2019, respectively. The hydrochemical facies illustrate that the major groundwater types in both seasons mainly consisted of Ca-Na-HCO3, Ca-HCO3-Cl and Na-HCO3 types. The concentration of As ranged from less then 0.300 to 183.00 μg/L, accounting for 22% (18 of 80 samples), exceeding the WHO guidelines of 10 μg/L. The spatial distribution of As was distinctly predominant as a hot spot in some areas during the wet season. The wells may have been contaminated from human activity and thus constituted a point source in the adjacent area. For Pb, its concentration in all the wells were not exceeded 10 μg/L of the WHO guidelines, appearing as a background concentration in this area. Most of the wells were shown to be in an oxidation state, supporting AsV mobility. Moreover, the area also had a nearly neutral pH that promoted AsV desorption, while the presence of undissolved Pb in the aquifers tended to increase. Furthermore, chemical applications to agricultural processes could release the As composition into the groundwater. The health risk resulting from oral consumption was at a higher risk level than dermal contact. The non-carcinogenic risk affecting the adult population exceeded the threshold level by approximately 27.5% of the wells, while for the children group, the risk level was within the limit. Total cancer risk (TCR) of adult residents exceeded the acceptable risk level (1 × 10-6) in all wells, causing carcinogenic health effects. Therefore, health surveillance is important in monitoring the toxic effects on the local residents who use groundwater from these contaminated wells. Furthermore, a sanitation service and an alternative treatment of the water supply will be needed, especially in wells with high As levels.

    Studies have documented independent adverse associations between prenatal and early-life exposure to environmental chemicals and social adversity with child neurodevelopment; however, few have considered these exposures jointly. The objective of this analysis is to examine whether associations of pesticide mixtures and adolescent neurobehavioral development are modified by early-life adversity in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort.

    We used linear mixed effects Bayesian Hierarchical Models (BHM) to examine the joint effect of applications of 11 agricultural pesticides within 1km of maternal homes during pregnancy and youth-reported Adverse Childhood Experiences (ACEs) with maternal and youth-reported internalizing behaviors, hyperactivity, and attention problems assessed via the Behavior Assessment for Children (BASC) (mean=50, standard deviation=10) at ages 16 and 18 years (n=458).

    The median (25th-75th percentiles) of ACEs was 1 (0-3); 72.3% of parf effect modification of agricultural pesticide use near the home during pregnancy and adolescent behavioral problems by child ACEs. Future studies should examine critical windows of susceptibility of exposure to chemical and non-chemical stressors and should consider biomarker-based exposure assessment methods.Field studies have shown that dense tree canopies and regular tree arrangements reduce noise from a point source. In urban areas, noise sources are multiple and tree arrangements are rarely dense. There is a lack of data on the association between the urban tree canopy characteristics and noise in complex urban settings. Our aim was to investigate the spatial variation of urban tree canopy characteristics, indices of vegetation abundance, and environmental noise levels. Using Light Detection and Ranging point cloud data for 2015, we extracted the characteristics of 1,272,069 public and private trees across the island of Montreal, Canada. We distinguished needle-leaf from broadleaf trees, and calculated the percentage of broadleaf trees, the total area of the crown footprint, the mean crown centroid height, and the mean volume of crowns of trees that were located within 100m, 250m, 500m, and 1000m buffers around 87 in situ noise measurement sites. A random forest model incorporating tree characteristics, the normalized difference vegetation index (NDVI) values, and the distances to major urban noise sources (highways, railways and roads) was employed to estimate variation in noise among measurement locations. We found decreasing trends in noise levels with increases in total area of the crown footprint and mean crown centroid height. The percentages of increased mean squared error of the regression models indicated that in 500m buffers the total area of the crown footprint (29.2%) and the mean crown centroid height (12.6%) had a stronger influence than NDVI (3.2%) in modeling noise levels; similar patterns of influence were observed using other buffers. Our findings suggest that municipal initiatives designed to reduce urban noise should account for tree features, and not just the number of trees or the overall amount of vegetation.The issue of effluent, especially organic colorants from several manufacturing units overlays an immense delinquent of the current epoch owing to its effect on oncogenic health hazards. Thus, Rare Earth Metal dysprosium (Dy) doped Zinc Ferrite (ZnFe2O4) were as-synthesized by a facile co-precipitation technique as an effectual nano photocatalyst intended to the amputation of these noxious dyes. The structural, functional, optical, magnetic, and degradation properties of this RE (Dy3+) doped ions were investigated using various characterizations, such as crystallite size (D) and several parameters (cation distribution, oxygen positional parameters, and bond length) were determined using XRD (X-ray diffraction) and it was found that as the dy3+ ion concentration increases the speck size decreased and the grain size remained within nano regime, which intern affects the surface area. From BET analysis it was found that on increasing the doping concentration, the surface area increases which pave a substantial role in the photo-Fenton activity. By using FT-IR (Fourier-transform infrared spectroscopy) various functional parameters (elastic, interionic bonds, ion distribution, etc.) were determined. Raman spectra had no extra peak formation which is seen to have pure phase formation of the as-synthesized samples. HR-TEM (High-Resolution Transmission Electron Microscopy analysis were done to determine the nature of the sample, the as-synthesized magnetic samples exhibit a polycrystalline formation with cubical agglomeration. The magnetic property was very significant for x = 0.10 concentration. As-synthesized (Fe0.9064Zn0.0936) [Fe1.0936Dy0.1Zn0.8064] O4) exhibits a momentous photo – Fenton activity against MB (Methylene blue), its removal efficiency was found to be 97.3% after 45 min. Also, this spinel ferrite acts as a magnetic recyclable catalyst even after 5 cycles with an insignificant lessening of elements and photo-Fenton activity.In June 2020, we published a review focused on assessing the influence of various air pollutants on the transmission of SARS-CoV-2, and the severity of COVID-19 in patients infected by the coronavirus. The results of most of those reviewed studies suggested that chronic exposure to certain air pollutants might lead to more severe and lethal forms of COVID-19, as well as delays/complications in the recovery of the patients. Since then, a notable number of studies on this topic have been published, including also various reviews. Given the importance of this issue, we have updated the information published since our previous review. Taking together the previous results and those of most investigations now reviewed, we have concluded that there is a significant association between chronic exposure to various outdoor air pollutants PM2.5, PM10, O3, NO2, SO2 and CO, and the incidence/risk of COVID-19 cases, as well as the severity/mortality of the disease. Unfortunately, studies on the potential influence of other important air pollutants such as VOCs, dioxins and furans, or metals, are not available in the scientific literature. In relation to the influence of outdoor air pollutants on the transmission of SARS-CoV-2, although the scientific evidence is much more limited, some studies point to PM2.5 and PM10 as potential airborne transmitters of the virus. Anyhow, it is clear that environmental air pollution plays an important negative role in COVID-19, increasing its incidence and mortality.Diabetic retinopathy (DR) is an increasingly frequent cause of blindness across populations; however, the events that initiate pathophysiology of DR remain elusive. Strong preclinical and clinical evidence suggests that abnormalities in retinal lipid metabolism caused by diabetes may account for the origin of this disease. A major arm of lipid metabolism, de novo biosynthesis, is driven by elevation in available glucose, a common thread binding all forms of vision loss in diabetes. Therefore, we hypothesized that aberrant retinal lipid biogenesis is an important promoter of early DR. find more In murine models, we observed elevations of diabetes-associated retinal de novo lipogenesis ∼70% over control levels. This shift was primarily because of activation of fatty acid synthase (FAS), a rate-limiting enzyme in the biogenic pathway. Activation of FAS was driven by canonical glucose-mediated disinhibition of acetyl-CoA carboxylase, a major upstream regulatory enzyme. Mutant mice expressing gain-of-function FAS demonstrated increased vulnerability to DR, whereas those with FAS deletion in rod photoreceptors maintained preserved visual responses upon induction of diabetes. Excess retinal de novo lipogenesis-either because of diabetes or because of FAS gain of function-was associated with modestly increased levels of palmitate-containing phosphatidylcholine species in synaptic membranes, a finding with as yet uncertain significance. These findings implicate glucose-dependent increases in photoreceptor de novo lipogenesis in the early pathogenesis of DR, although the mechanism of deleterious action of this pathway remains unclear.Ubiquitination is a crucial posttranslational protein modification involved in a myriad of biological pathways. This modification is reversed by deubiquitinases (DUBs) that deconjugate the single ubiquitin (Ub) moiety or poly-Ub chains from substrates. In the past decade, tremendous efforts have been focused on targeting DUBs for drug discovery. However, most chemical compounds with inhibitory activity for DUBs suffer from mild potency and low selectivity. To overcome these obstacles, we developed a phage display-based protein engineering strategy for generating Ub variant (UbV) inhibitors, which was previously successfully applied to the Ub-specific protease (USP) family of cysteine proteases. In this work, we leveraged the UbV platform to selectively target STAMBP, a member of the JAB1/MPN/MOV34 (JAMM) metalloprotease family of DUB enzymes. We identified two UbVs (UbVSP.1 and UbVSP.3) that bind to STAMBP with high affinity but differ in their selectivity for the closely related paralog STAMBPL1. We determined the STAMBPL1-UbVSP.