Activity

  • Brask Merritt posted an update 1 week ago

    0 ACEs, 1.48-9.34). Mirroring these findings, above median PCEs were associated with lowered odds of these 6 health outcomes after adjusting for ACEs (OR for above vs. below median PCEs, 0.46-0.67), but not with odds of physical health outcomes and most of the health-risk behaviours. Stratified analyses by ACEs exposure level showed that the association between PCEs and self-rated health remained stable across ACEs exposure levels, while the association between PCEs and mental health outcomes and physical inactivity varied across ACEs exposure levels. Conclusions Our results suggest that above median PCEs attenuate the association between ACEs and poor self-rated health, mental health problems, and physical inactivity in later life, and are negatively associated with these health problems even in the concurrent presence of ACEs. Interventions to promote PCEs can help to reduce unfavourable long-term health outcomes following childhood adversity.Desmogleins (DSGs), with the ability to link adjacent cells, have been shown to participate in the development of malignancy. DSG3 was up-regulated in various cancers, including lung, head and neck, and esophagus squamous cell carcinoma, which contributed to the tumor progression. The role of DSG3 in pancreatic ductal adenocarcinoma (PDAC) still remains elusive. Here, the expression of DSG3 was found to be enhanced in pancreatic cancer cell lines in vitro. Functional assays showed that shRNA-mediated knockdown of DSG3 decreased cell viability of pancreatic cancer cells and retarded the cell proliferation, migration and invasion. However, pcDNA-mediated over-expression of DSG3 exhibited reversed effect on pancreatic cancer cell progression. In addition, the in vivo assay demonstrated that transfection of shDSG3 lentiviruses into pancreatic cancer cells repressed the tumorigenicity of PDAC after the cancer cells were transplanted into mice subcutaneously. Elevated DSG3 expression promoted the phosphorylation of Src (p-Src), focal adhesion kinase (p-FAK) and AKT (p-AKT) in vitro, while silence of DSG3 reduced the expression of p-Src, p-FAK and p-AKT both in vitro and in vivo. In conclusion, DSG3, as an oncogene, contributed to the tumorigenicity of PDAC through activating Src-FAK signaling.LBAL was developed as an adalimumab (Humira®) biosimilar using Chinese hamster ovary cell lines. Comparable quality, safety, and efficacy between a biosimilar and its reference product should be ensured for regulatory approval. Here, we present the results of a comprehensive physicochemical and biological characterization between LBAL and Humira®. As physicochemical attributes, primary and higher-order structure, N-glycan profile, and disulfide linkage were investigated. Biological attributes were evaluated by target/receptor binding analysis and in vitro/ex vivo cell-based assays, which are linked to mechanisms of action. As a result, LBAL had the identical amino acid sequence, similar post-translational modifications and N-/C-terminal variants, and comparable primary, secondary, and tertiary structures and disulfide linkage profile. However, some differences in N-glycan profiles were observed. Biological activities, including tumor necrosis factor (TNF) binding, TNF-neutralization, apoptosis, Fc receptor binding, and complement-dependent cytotoxicity, were largely consistent. Despite a slightly lower antibody-dependent cellular cytotoxicity activity in LBAL, this difference was not significant under physiological conditions. As indicated, this extensive analytical characterization and functional comparison assessment showed that LBAL was similar to Humira®, with minor differences of no clinical relevance. Taken together, our comparative assessment of physicochemical and biological attributes demonstrated that LBAL is structurally and functionally very similar to Humira®, supporting the biosimilarity of clinical efficacy and safety.To identify the specific region of eCG involved in FSH-like activity, the following mutant expression vectors were constructed targeting the amino acid residues 102-104 of the eCG β-subunit single mutants, eCGβV102G/α, eCGβF103P/α, and eCGβR104K/α; double mutants, eCGβV102G;F103P/α, eCGβV102G;R104K/α, and eCGβF103P;R104K/α; triple mutant, eCGβV102G;F103P;R104K/α. The LH-like and FSH-like activities of eCG mutants were examined in CHO-K1 cells expressing rat LH/CG receptor and rat FSH receptor. The levels of eCGβV102G/α, eCGβR104K/α, and eCGβV102G;R104K/α in the culture supernatant were markedly lower than those of eCGβ/α-wt. The other mutants and rec-eCGβ/α-wt were efficiently secreted into the culture supernatant. The LH-like activities of eCGV104G/α, eCGβV102G;R104K/α, and eCGβF103P;R104K/α were approximately 61%, 52%, and 54%, respectively, of those of eCG-wt. The Rmax values of the mutants were 58.9%-78.8% those of eCG-wt with eCGβR104K/α exhibiting the lowest value. 5-Fluorouracil The FSH-like activities of single mutants were only 16%-20% of those of eCG-wt. Additionally, the FSH-like activity of double mutants was less than 10% of that of eCG-wt. In particular, the FSH-like activities of βV102G;R104K/α and βF103P;R104K/α were 2.5-2.9% of that of eCG-wt. These results suggest that the amino acid residues 102-104 of the eCG β-subunit are dispensable and that the residue 104 of the eCG β-subunit plays a pivotal role in signal transduction through the rat FSH receptor. Thus, these mutants may aid future studies on eCG interactions with mammalian FSH receptors in vitro and in vivo.Glioblastoma multiforme (GBM) is the most aggressive primary brain cancer and this is due to cancer cells being apoptosis-resistant and having increased cell proliferation, migration, invasion, and angiogenesis properties. Previous studies have indicated both STAT and Notch pathways being important for initiation and progression in GBM. In this work, we first studied the effects of STAT inhibitors on Notch signalling using small molecule STAT inhibitors. It was observed that STAT inhibitors surprisingly activated Notch signalling by inducing NICD and Notch target genes in GBM cells. Thus, we aimed to combine STAT inhibitor treatment with a Notch pathway inhibitor and study effects on GBM tumourigenesis. STAT5 inhibitor (Pimozide) and STAT3 inhibitor (S3I-201) were individually used in combination with γ-secretase inhibitor (DAPT), an inhibitor of Notch signalling, in a panel of GBM cells for cell proliferation and epithelial plasticity changes. Compared with single-agent treatments, combinatorial treatments with the STAT and Notch inhibitors significantly increased apoptosis in the treated cells, impairing cell proliferation, migration, and invasion. These findings suggest that concurrent blocking of STAT and Notch signalling pathways could provide added therapeutic benefit for the treatment of glioblastoma.Colon cancer is a malignant tumor that seriously affects human health. Recently, studies revealed that the expression of MTBP enhanced the proliferation and metastasis of many types of cancer cells. And the data also showed that MTBP has the potential to regulate the expression of ZEB2. However, it is unclear whether MTBP can affect the proliferation, migration and invasion of colon cancer cells by modulating the expression of ZEB2. In this study, we established the MTBP overexpression and knockdown colon cancer cells with the transfection. Next, CCK-8 and transwell assays were carried out to determine the changes of the proliferation and invasion of colon cancer cells, respectively. After that, we overexpressed the ZEB2 in these MTBP knockdown colon cancer cells. Finally, the invasion and migration of these cells were detected with the same methods. We revealed that overexpression of MTBP enhanced the proliferation and invasion of colon cancer cells. Moreover, suppression of MTBP repressed the proliferation, migration and invasion of colon cancer cells. Furthermore, MTBP promoted the expression of ZEB2. The overexpression of ZEB2 abolished the MTBP knockdown induced inhibition of the migration and invasion of colon cancer cells. These results implied that MTBP enhanced the proliferation, migration and invasion of colon cancer cells by activating the expression of ZEB2.Environmental risk factors are recognized as threats to public health. Stress granules (SGs) are non-membranous assemblies of mRNAs and proteins expressed in response to various stressors to promote cell survival. In this study, SG formation was examined to confirm the effects of polyhexamethylene guanidine phosphate (PHMG), chloromethylisothiazolinone (CMIT), and particulate matter (PM10) in airway epithelial cells, A549, HPAEpiC, and BEAS-2B cells. SGs were not observed after CMIT, PHMG, and PM10 treatments, as determined by immunofluorescence microscopy. Moreover, there was no change in the phosphorylation of the translation initiation factor eIF2αfollowing treatment with PHMG, CMIT, and PM10. Taken together, our findings might help determine the biological hazards of these materials.Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations.Fetal growth restriction (FGR) is the failure of the fetus toachieve its genetically determined growth potential, which increasesrisks for a variety of genetic diseases, such as type 2 diabetes mellitus, coronary artery disease, and stroke, during the lifetime. The dysregulation of DNA methylationis known to interact with environmental fluctuations, affect gene expressions comprehensively, and be fatal to fetus development in specific cases. Therefore, we set out to find out epigenetic and transcriptomic alterations associated with FGR development. We found a set of differentially expressed genes associated with differentially methylated regions in placentae and cord blood samples. Using dimensional reduction analysis, the expression and methylation variables of the epigenetically altered genes classified the FGR samples from the controls. These genes were also enriched in the biological pathways such as metabolism and developmental processes related to FGR. Furthermore, three genes of INS, MEG3, and ZFP36L2 are implicated in epigenetic imprinting, which has been associated with FGR. These results strongly suggest that DNA methylation is highly dysregulated during FGR development, and abnormal DNA methylation patterns are likely to alter gene expression.