Activity

  • MacLeod Hurst posted an update 2 weeks, 1 day ago

    5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self-splitting and self-sucking are built to reveal the importance of liquid behavior induced by micro-nano hierarchical structure.A design, manufacturing, and control methodology is presented for the transduction of ultrasound into frequency-selective actuation of multibody hydrogel mechanical systems. The modular design of compliant mechanisms is compatible with direct laser writing and the multiple degrees of freedom actuation scheme does not require incorporation of any specific material such as air bubbles. These features pave the way for the development of active scaffolds and soft robotic microsystems from biomaterials with tailored performance and functionality. Finite element analysis and computational fluid dynamics are used to quantitatively predict the performance of acoustically powered hydrogels immersed in fluid and guide the design process. The outcome is the remotely controlled operation of a repertoire of untethered biomanipulation tools including monolithic compound micromachinery with multiple pumps connected to various functional devices. The potential of the presented technology for minimally invasive diagnosis and targeted therapy is demonstrated by a soft microrobot that can on-demand collect, encapsulate, and process microscopic samples.The flourishing development of multifunctional flexible electronics cannot leave the beneficial role of nature, which provides continuous inspiration in their material, structural, and functional designs. During the evolution of flexible electronics, some originated from nature, some were even beyond nature, and others were implantable or biodegradable eventually to nature. Therefore, the relationship between flexible electronics and nature is undoubtedly vital since harmony between nature and technology evolution would promote the sustainable development. Herein, materials selection and functionality design for flexible electronics that are mostly inspired from nature are first introduced with certain functionality even beyond nature. Then, frontier advances on flexible electronics including the main individual components (i.e., energy (the power source) and the sensor (the electric load)) are presented from nature, beyond nature, and to nature with the aim of enlightening the harmonious relationship between the modern electronics technology and nature. Finally, critical issues in next-generation flexible electronics are discussed to provide possible solutions and new insights in prospective exploration directions.Advances in engineered hydrogels reveal how cells sense and respond to 3D biophysical cues. However, most studies rely on interfacing a population of cells in a tissue-scale bulk hydrogel, an approach that overlooks the heterogeneity of local matrix deposition around individual cells. A droplet microfluidic technique to deposit a defined amount of 3D hydrogel matrices around single cells independently of material composition, elasticity, and stress relaxation times is developed. Mesenchymal stem cells (MSCs) undergo isotropic volume expansion more rapidly in thinner gels that present an Arg-Gly-Asp integrin ligand. Mathematical modeling and experiments show that MSCs experience higher membrane tension as they expand in thinner gels. Furthermore, thinner gels facilitate osteogenic differentiation of MSCs. By modulating ion channels, it is shown that isotropic volume expansion of single cells predicts intracellular tension and stem cell fate. The results suggest the utility of precise microscale gel deposition to control single cell functions.Epithelial-mesenchymal transition (EMT) or its reverse process mesenchymal-epithelial transition (MET) occurs in multiple physiological and pathological processes. Tofacitinib JAK inhibitor However, whether an entire EMT-MET process exists and the potential function during human hematopoiesis remain largely elusive. Utilizing human pluripotent stem cell (hPSC)-based systems, it is discovered that while EMT occurs at the onset of human hematopoietic differentiation, MET is not detected subsequently during differentiation. Instead, a biphasic activation of mesenchymal genes during hematopoietic differentiation of hPSCs is observed. The expression of mesenchymal genes is upregulated during the fate switch from pluripotency to the mesoderm, sustained at the hemogenic endothelium (HE) stage, and attenuated during hemogenic endothelial cell (HEP) differentiation to hematopoietic progenitor cells (HPCs). A similar expression pattern of mesenchymal genes is also observed during human and murine hematopoietic development in vivo. Wnt signaling and its downstream gene SNAI1 mediate the up-regulation of mesenchymal genes and initiation of mesoderm induction from pluripotency. Inhibition of transforming growth factor-β (TGF-β) signaling and downregulation of HAND1, a downstream gene of TGF-β, are required for the downregulation of mesenchymal genes and the capacity of HEPs to generate HPCs. These results suggest that the biphasic regulation of mesenchymal genes is an essential mechanism during human hematopoiesis.In addition to superhydrophobicity/superoleophobicity, surfaces with switchable water/oil repellency have also aroused considerable attention because of their potential values in microreactors, sensors, and microfluidics. Nevertheless, almost all those as-prepared surfaces are only applicable for liquids with higher surface tension (γ > 25.0 mN m-1) in air. In this work, inspired by some natural models, such as lotus leaf, springtail skin, and filefish skin, switchable repellency for liquids (γ = 12.0-72.8 mN m-1) in both air and liquid is realized via employing 3D deformable multiply re-entrant microstructures. Herein, the microstructures are fabricated by a two-photon polymerization based 3D printing technique and the reversible deformation is elaborately tuned by evaporation-induced bending and immersion-induced fast recovery (within 30 s). Based on 3D controlled microstructural architectures, this work offers an insightful explanation of repellency/penetration behavior at any three-phase interface and starts some novel ideas for manipulating opposite repellency by designing/fabricating stimuli-responsive microstructures.