Activity

  • White Peele posted an update 2 weeks, 2 days ago

    These results constitute an alert for the health authorities of the country, since prolonged exposure of the inhabitants to Aspergillus spores can cause severe persistent asthma, among other diseases.This study aims to examine the contribution of nanoporous silica entrapped lipid-drug complexes (NSCs) in improving the solubility and bioavailability of dutasteride (DUT). An NSC was loaded with DUT (dissolved in lipids) and dispersed at a nanoscale level using an entrapment technique. NSC microemulsion formation was confirmed using a ternary phase diagram, while the presence of DUT and lipid entrapment in NSC was confirmed using scanning electron microscopy. Differential scanning calorimetry and X-ray diffraction revealed the amorphous properties of NSC. The prepared all NSC had excellent flowability and enhanced DUT solubility but showed no significant difference in drug content homogeneity. An increase in the lipid content of NSC led to an increase in the DUT solubility. Further the NSC were formulated as tablets using D-α tocopheryl polyethylene glycol 1000 succinate, glyceryl caprylate/caprate, and Neusilin®. The NSC tablets showed a high dissolution rate of 99.6% at 30 min. Furthermore, NSC stored for 4 weeks at 60 °C was stable during dissolution testing. Pharmacokinetic studies performed in beagle dogs revealed enhanced DUT bioavailability when administered as NSC tablets. NSC can be used as a platform to develop methods to overcome the technical and commercial limitations of lipid-based preparations of poorly soluble drugs.The paper presents the screening of 20 deep eutectic solvents (DESs) composed of tetrapropylammonium bromide (TPABr) and glycols in various molar ratios, and 6 conventional solvents as absorbents for removal of siloxanes from model biogas stream. The screening was achieved using the conductor-like screening model for real solvents (COSMO-RS) based on the comparison of siloxane solubility in DESs. For the DES which was characterized by the highest solubility of siloxanes, studies of physicochemical properties, i.e., viscosity, density, and melting point, were performed. DES composed of tetrapropylammonium bromide (TPABr) and tetraethylene glycol (TEG) in a 13 molar ratio was used as an absorbent in experimental studies in which several parameters were optimized, i.e., the temperature, absorbent volume, and model biogas flow rate. The mechanism of siloxanes removal was evaluated by means of an experimental FT-IR analysis as well as by theoretical studies based on σ-profile and σ-potential. On the basis of the obtained results, it can be concluded that TPABrTEG (13) is a very effective absorption solvent for the removal of siloxanes from model biogas, and the main driving force of the absorption process is the formation of the hydrogen bonds between DES and siloxanes.Monitoring antibiotic resistance genes (ARGs) across ecological niches is critical for assessing the impacts distinct microbial communities have on the global spread of resistance. In permafrost-associated soils, climate and human driven disturbances augment near-surface thaw shifting the predominant bacteria that shape the resistome in overlying active layer soils. This thaw is of concern in Alaska, because 85% of land is underlain by permafrost, making soils especially vulnerable to disturbances. The goal of this study is to assess how soil disturbance, and the subsequent shift in community composition, will affect the types, abundance, and mobility of ARGs that compose the active layer resistome. We address this goal through the following aims (1) assess resistance phenotypes through antibiotic susceptibility testing, and (2) analyze types, abundance, and mobility of ARGs through whole genome analyses of bacteria isolated from a disturbance-induced thaw gradient in Interior Alaska. We found a high proportion of isolates resistant to at least one of the antibiotics tested with the highest prevalence of resistance to ampicillin. The abundance of ARGs and proportion of resistant isolates increased with disturbance; however, the number of ARGs per isolate was explained more by phylogeny than isolation site. When compared to a global database of soil bacteria, RefSoil+, our isolates from the same genera had distinct ARGs with a higher proportion on plasmids. These results emphasize the hypothesis that both phylogeny and ecology shape the resistome and suggest that a shift in community composition as a result of disturbance-induced thaw will be reflected in the predominant ARGs comprising the active layer resistome.This paper reports on a bidirectional Knudsen pump (KP) with a 3D-printed thermal management platform; the pump is intended principally for microscale gas chromatography applications. Knudsen pumps utilize thermal transpiration, where non-viscous flow is created against a temperature gradient; no moving parts are necessary. Here, a specialized design leverages 3D direct metal laser sintering and provides thermal management that minimizes loss from a joule heater located on the outlet side of KP, while maintaining convective cooling on the inlet side. The 3D-KP design is integrative and compact, and is specifically intended to simplify assembly. The 3D-KP pumping area is ≈1.1 cm2; with the integrated heat sink, the structure has a footprint of 64.2 × 64.2 mm2. Using mixed cellulose ester (MCE) membranes with a 25 nm average pore diameter and 525 μm total membrane thickness as the pumping media, the 3D-KP achieves a maximum flow rate of 0.39 sccm and blocking pressure of 818.2 Pa at 2 W input power. The operating temperature is 72.2 °C at ambient room temperature. In addition to MCE membranes, anodic aluminum oxide (AAO) membranes are evaluated as the pumping media; these AAO membranes can accommodate higher operating temperatures than MCE membranes. The 3D-KP with AAO membranes with 0.2 μm average pore diameter and 531 μm total membrane thickness achieves a maximum flow rate of 0.75 sccm and blocking pressure of 496.1 Pa at 9.8 W at an operating temperature of 191.2 °C.This study aimed to evaluate the clinical outcomes of radiation therapy (RT) for stage I gastric mucosa-associated lymphoid tissue (MALT) lymphoma and find predictive factors for relapse after RT. This retrospective study included 145 patients without a prior history of treatment, except Helicobacter pylori eradication therapy, who were irradiated for stage I gastric MALT lymphoma. The gastric body was the most commonly involved location of the dominant lesion (66.9%), and H. pylori infection at first diagnosis was detected in 61 (42.1%) patients. click here The median RT dose was 30 Gy (range, 24-40). Seven patients had an autoimmune disease. All patients except one achieved a complete remission at post-treatment endoscopic biopsy after a median of 2 months (range, 1-36). During the median follow-up at 51 months (range, 2-146), 11 patients experienced relapses in the stomach (n = 5), in a distant site (n = 4), and in both (n = 2). The five-year overall, local relapse-free, distant relapse-free, and relapse-free survival (RFS) rates were 98.