Activity

  • Tobiasen Baldwin posted an update 1 day, 22 hours ago

    Next, we evaluated the injection-molded device through multi-step fluid control. We confirmed, through real-time observation of the device, that accurate flow control in the designed ELISA procedure was executed. Lastly, ELISA was employed for the measurements of mouse IgG using the system consisting of the bento box and the polypropylene device. The system performed all fluidic controls within 12 min; we confirmed the specificity of the system, and the LOD was 0.320 ng ml-1.Seeded supramolecular polymerization of cystine-based dimeric diamides with aromatic substituents at the C- and N-termini was achieved in aqueous media. Theoretical and spectroscopic studies reveal that the terminal groups play crucial roles in slowing spontaneous assembly through formation of a folded conformation and guiding molecular alignment in the aggregated state.A myriad of topical therapies and dressings are available to the clinicians for wound healing skin, but only a very few have shown their effectiveness in promoting wound repair due to challenges in controlling drug release. Masitinib chemical structure To address this issue, in this work, a near infrared (NIR)-light activable cryogel based on butyl methacrylate (BuMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) incorporated with reduced graphene oxide (rGO) was fabricated. The obtained cryogel provides the required hydrophilicity beneficial for wound treatment. The excellent photo-thermal properties of rGO allow for heating the cryogel, which results in subsequent swelling of the cryogel (CG) followed by release of the encapsulated drug load, cefepime in our case. Without photothermal activation, no release of payload was observed. The potential of this bandage for wound healing was examined using an ex vivo human skin model infected with Staphylococcus aureus (S. aureus). Apart from the efficacy of the cryogel based wound healing system, our results also suggest that the ex vivo wound model evaluated here provides a rapid and valuable tool to study superficial skin infections in humans and test the efficacy of antimicrobial agents.Raman spectroscopic methods are being projected as novel tools to study the early invisible molecular level changes in a label-free manner. In the present study, we have used Raman spectroscopy to explore the earliest biochemical changes in murine vocal folds in response to time-bound cigarette smoke exposure. Mice were exposed to cigarette smoke for 2 or 4-weeks through a customized smoke inhalation system. The larynx was collected and initial evaluations using standard methods of analysis such as histopathology and immunofluorescence was performed. Concurrent unstained sections were used for Raman imaging. Two common pathological features of vocal fold disorders including alterations in collagen content and epithelial hypercellularity, or hyperplasia, were observed. The mean spectra, principal component analysis, and Raman mapping also revealed differences in the collagen content and hypercellularity in the smoke exposed tissues. The differences in 2-week exposed tissues were found to be more prominent as compared to 4-week. This was attributed to adaptive responses and the already reported biphasic effects, which suggest that collagen synthesis is significantly reduced at higher cigarette smoke concentrations. Overall findings of the study are supportive of the prospective application of Raman imaging in monitoring changes due to cigarette smoke in the vocal folds.The combination of lanthanum(iii) triflate, sulfur, and dimethyl sulfoxide prompted a facile, direct preparation of 2,5-diformylfuran from glucose and fructose. The one-step dehydration/oxidation of fructose afforded 2,5-diformylfuran in an excellent yield with high selectivity. The proposed mechanism, large-scale synthesis, and product separation were presented. This approach represents a straightforward and eco-friendly pathway, which can be applied in the large-scale production of 2,5-diformylfuran from fructose.There is a growing demand to develop sprayable hydrogel adhesives with rapid-forming and antibacterial abilities to instantly seal open wounds and combat pathogen infection. Herein, we propose to design a polydopamine nanoparticle (PDA NP) coupled PEG hydrogel that can quickly solidify via an amidation reaction after spraying as well as tightly binding PDA NPs to deliver reactive oxygen species (ROS) and induce a photothermal effect for bactericidal activity, and provide a hydrophilic surface for antifouling activity. The molecular structure of the 4-arm-PEG-NHS precursor was regulated to increase its reactivity with 4-arm-PEG-NH2, which thus shortened the gelation time of the PEG adhesive to 1 s to allow a fast solidification after being sprayed. The PEG-NHS precursor also provided covalent binding with tissue and PDA NPs. The reduced PDA NPs have redox activity to convey electrons to oxygen to generate ROS (H2O2), thus endowing the hydrogel with ROS dependent antibacterial ability. Moreover, NIR irradiation can accelerate the ROS release because of the photothermal effect of PDA NPs. In vitro tests demonstrated that H2O2 and the NIR-photothermal effect synergistically induced a fast bacterial killing, and an in vivo anti-infection test also proved the effectiveness of PEG-PDA. The sprayable PEG-PDA hydrogel adhesive, with rapid-forming performance and a dual bactericidal mechanism, may be promising for sealing large-scale and acute wound sites or invisible bleeding sites, and protect them from pathogen infection.The emerging anti-tumor immunotherapy has made significant progress in clinical application. However, single immunotherapy is not effective for all anti-tumor treatments, owing to the low objective response rate and the risk of immune-related side effects. Meanwhile, photothermal therapy (PTT) has attracted significant attention because of its non-invasiveness, spatiotemporal controllability and small side effects. Combining PTT with immunotherapy overcomes the issue that single photothermal therapy cannot eradicate tumors with metastasis and recurrence. However, it improves the therapeutic effect of immunotherapy, as the photothermal therapy usually promotes release of tumor-related antigens, triggers immune response by the immunogenic cell death (ICD), thereby, endowing unique synergistic mechanisms for cancer therapy. This review summarizes recent research advances in utilizing nanomedicines for PTT in combination with immunotherapy to improve the outcome of cancer treatment. The strategies include immunogenic cell death, immune agonists and cancer vaccines, immune checkpoint blockades and tumor specific monoclonal antibodies, and small-molecule immune inhibitors.