Activity

  • Halvorsen McKenna posted an update 4 days, 1 hour ago

    The displacement hypothesis of eight-node cubic elements is selected as the shape function of digital volume correlation (DVC), and the Newton-Raphson iterative method is selected to solve the partial differential equation to measure the displacement field. In order to ensure that the DVC algorithm is usable under the large rotation condition, the spherical shell template matching technique is presented to perform the integer-voxel displacement searching for nodes, which can provide the optimal initial values for the Newton-Raphson iterative method due to the rotation and translation invariance of the spherical shell template. selleck inhibitor Simulated volume images are used to verify the reliability of the proposed method, and the results show that the proposed DVC method can be used to measure the deformation with an arbitrary rigid body rotation angle. This work is expected to be useful to measure deformation with large rotation of the internal structure of materials.A full-color display consisting of red and green photoluminescence cadmium-free quantum dots (QDs) as the color conversion material and excited by a 68×68 blue micro-LED flip chip array mounted on an active-matrix driving board was completed in this study. The QD photoresist (QDPR) lithography technology was reported in detail, and it has been proven to be a stable process route. The suitable thickness of 12±1µm of the QDPR and black matrix was proposed to reduce the light cross talk between different sub-pixels. The thickness of the common color filter of 1-2 µm was made successfully between the quantum dot film and the cover glass, which can greatly reduce the leakage of blue backlight and decrease the quantum dots excitation by the ambient light, as well as improve the color gamut and color purity of the display panel. In addition, the high red and green light conversion efficiency reaches up to 78.1% and 296.5%, respectively, and the screen display can reach 98.8% NTSC on the CIE 1931 chromaticity. Representative RGB monochromatic pictures were displayed successfully and ≤0.04 viewing angle deviation of the display was measured precisely.Time-of-flight (ToF) cameras can acquire the distance between the sensor and objects with high frame rates, offering bright prospects for ToF cameras in many applications. Low-resolution and depth errors limit the accuracy of ToF cameras, however. In this paper, we present a flexible accuracy improvement method for depth compensation and feature points position correction of ToF cameras. First, a distance-error model of each pixel in the depth image is established to model sinusoidal waves of ToF cameras and compensate for the measured depth data. Second, a more accurate feature point position is estimated with the aid of a high-resolution camera. Experiments evaluate the proposed method, and the result shows the root mean square error is reduced from 4.38 mm to 3.57 mm.We carried out a fast processing investigation based on a graphics processing unit (GPU) for a distributed acoustic sensor using a linear frequency modulation pulse. The moving window cross-correlation calculations are realized on the GPU, which makes use of parallel computing. We analyzed the effect of the thread number in a block on the GPU streaming multiprocessor utilization efficiency and then compared the acceleration under different calculation scales. By maximizing the streaming multiprocessor utilization efficiency and large calculation scale, a maximum acceleration ratio of 86.01 was obtained.Optical coherence tomography (OCT) image enhancement is a challenging task because speckle reduction and contrast enhancement need to be addressed simultaneously and effectively. We present a refined Retinex model for guidance in improving the performance of enhancing OCT images accompanied by speckle noise; a physical explanation is provided. Based on this model, we establish two sequential optimization functions in the logarithmic domain for speckle reduction and contrast enhancement, respectively. More specifically, we obtain the despeckled image of an entire OCT image by solving the first optimization function. Incidentally, we can recover the speckle noise map through removing the despeckle component directly. Then, we estimate the illumination and reflectance by solving the second optimization function. Further, we apply the contrast-limited adaptive histogram equalization algorithm to adjust the illumination, and project it back to the reflectance for achieving contrast enhancement. Experimental results demonstrate the robustness and effectiveness of our proposed method. It performs well in both speckle reduction and contrast enhancement and is superior to the other two methods both in terms of qualitative analysis and quantitative assessment. Our method has the practical potential to improve the accuracy of manual screening and computer-aided diagnosis for retinal diseases.We propose a dual shearing shearography system based on a spatial light modulator (SLM). Compared to spatial phase shift shearography, the advantages of this system include its simple structure, relatively high light efficiency, and good phase map quality. Digital shearography is a fast, practical, non-contact, whole-field, and anti-turbulent optical approach to non-destructive testing (NDT) and strain measurement. Because the shearing direction determines the strain direction being measured, tests using multiple shearing directions are sometimes required to obtain strain in different directions and detect all defects. Various setups, based on the spatial phase shift method, have been proposed to solve the issue. While some of these setups perform well, they may also introduce new problems, such as poor phase map quality and low light efficiency. We present a sequential dual shearing shearographic system with good phase map quality and high light efficiency. Due to the SLM’s high-speed response, capable of reaching hundreds of hertz, SLM-based dual shearing direction shearography allows for fast temporal phase shifting and shearing direction switching while providing very good phase map quality. Unlike the spatial phase shift method, which has low light efficiency due to its need for a small aperture to enable a relatively large speckle size to cover multiple pixels, the proposed method is based on a fast temporal phase shift and does not have this limitation. In addition, SLM can provide a programmable and adjustable shearing method in any direction and distance, which is beneficial for strain measurements and NDT requiring strain measurements in different directions using a small and precise shearing distance. We describe in detail the theory derivation and non-destructive testing application results for the SLM-based dual shearing direction shearography system.