-
Strickland Barefoot posted an update 1 day, 12 hours ago
The adsorption of surfactant was also monitored with time, and it was found to be increasing with respect to time. The adsorption of surfactant increased from 1.292 mg/g after 0.5 days to 4.179 mg/g after 4 days at 2500 ppm of surfactant concentration at 25 °C. The viscosity, surface tension, and wettability studies were also conducted on the chemical slug used for flooding. The addition of CSNs effectively reduced the surface tension as well as shifted the wettability toward water-wet at 25 °C. Sand pack flooding experiments were performed at 60 °C to access the potential of CSNs in oil recovery, and it was found that the addition of 25 vol % CSNs in the conventional surfactant polymer chemical slug aided in the additional oil recovery up to 5% as compared to that of the conventional surfactant polymer slug.Kaixin Powder (KXP) is a classic formula for treating morbid forgetfulness in ancient China. To guarantee the efficacy and safety of KXP, a simple and accurate HPLC-DAD method has been established and validated for the quantitative analysis of seven bioactive compounds in KXP. Dehydrotumulosic acid (DTU) and dehydrotrametenolic acid (DTR) were quantified in KXP for the first time. Good chromatographic separation was conducted on a Kromasil 100-5 C18 column (250 mm × 4.6 mm, 5 μm) by gradient elution using mobile phases containing acetonitrile and 0.1% formic acid aqueous solution at different detection wavelengths. The calibration curves of each compound showed good linearity (r ≥ 0.9990), and the LOD and LOQ were in the ranges of 0.01-0.10 and 0.03-0.40 μg/mL, respectively. The relative standard deviations (RSDs) of intra-day and inter-day precisions were in the ranges of 0.45-1.74% and 0.56-2.32%, respectively. All recoveries were in the range of 93.6-105.5% with an RSD no more than 2.77%. These quantification results of seven compounds determined in the samples were further confirmed by HPLC-QTOF-MS/MS. This study provides a useful and simple method for analyzing the major bioactive compounds and improves the quality assessment research of KXP.Accurate predictions of the coal temperature in coal spontaneous combustion (CSC) are important for ensuring coal mine safety. Gas coal (the Zhaolou coal mine in Shandong Province, China) was used in this paper. A large CSC experimental device was adopted to obtain its characteristic temperatures from the macroscopic characteristics of gas production. A simulated annealing-support vector machine (SA-SVM) prediction model was proposed to reflect the complex nonlinear mapping between characteristic gases and the coal temperature. The risk degree of CSC was estimated in the time domain, and the model was verified by using in situ data from an actual working face. Furthermore, back-propagation neural network (BPNN) and single SVM methods were adopted for comparison. The results showed that the BPNN could not adapt to the small-sample problem due to overfitting and the output of a single SVM was unstable due to its strong dependence on the setting of hyperparameters. Through the SA global optimization process, the optimal combination of hyperparameters was obtained. Therefore, SA-SVM had higher prediction accuracy, robustness, and error tolerance rate and better environmental adaptability. These findings have certain practical significances for eliminating the hidden danger of CSC in the gob and providing timely warnings about potential danger.Phosphate is a major nonpoint source pollutant in both the Louisiana local streams as well as in the Gulf of Mexico coastal waters. Linsitinib price Phosphates from agricultural run-off have contributed to the eutrophication of global surface waters. Phosphate environmental dissemination and eutrophication problems are not yet well understood. Thus, this study aimed to monitor phosphate in the local watershed to help identify potential hot spots in the local community (Mississippi River, Louisiana) that may contribute to nutrient loading downstream (in the Gulf of Mexico). An electrochemical method using a physical vapor deposited cobalt microelectrode was utilized for phosphate detection using cyclic voltammetry and amperometry. The testing results were utilized to evaluate the phosphate distribution in river water and characterize the performance of the microsensor. Various characterizations, including the limit of detection, sensitivity, and reliability, were conducted by measuring the effect of interferences, including dissolved oxygen, pH, and common ions. The electrochemical sensor performance was validated by comparing the results with the standard colorimetry phosphate detection method. X-ray photoelectron spectroscopy (XPS) measurements were performed to understand the phosphate sensing mechanism on the cobalt electrode. This proof-of-concept sensor chip could be utilized for on-field monitoring using a portable, hand-held potentiostat.Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min·mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min·mol CYP)], followed by CYP1A1 [16 ML/(min·mol CYP)] and CYP1A2 [0.6 ML/(min·mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes.