-
Gibson Huynh posted an update 6 hours, 43 minutes ago
Furthermore, shamanic practitioners had decreased low alpha and increased low beta connectivity during drumming and classical music and decreased neural signal diversity in the gamma band during drumming that inversely correlated with insightfulness. Finally, criticality in practitioners was increased during drumming in the low and high beta and gamma bands, with increases in the low beta band correlating with complex imagery and elementary visual alterations. These findings suggest that psychedelic drug-induced and non-pharmacologic alterations in consciousness have overlapping phenomenal traits but are distinct states of consciousness, as reflected by the unique brain-related changes during shamanic trance compared to previous literature investigating the psychedelic state.Purpose Studies of reactive and proactive modes of inhibitory control tend to show age-related declines and are accompanied by abnormalities in the prefrontal cortex. We explored which mode of inhibitory control would be more amenable to change and accrue greater benefits following engagement in a 4-week theater acting intervention in older adults. These gains were evaluated by performance on the AX-CPT task. We hypothesized that an increase in proactive control would relate to an increase in AY errors and a decrease in BX errors. In contrast, an increase in reactive control would be associated with a decrease in AY errors, no change in AY reaction time, and an increase in BX response time. Further, we posited that an increase in behavioral proactive control would accompany greater cue versus probe activity for previously identified regions in the prefrontal cortex. In contrast, an increase in behavioral reactive control would be accompanied by greater probe activation in these identified brain areas. Materia-activation in Brodmann areas 6 and 8, relative to controls and pre-intervention. Conclusion We found some evidence for improvements in reactive control via brain measures, attributed to engagement in the acting intervention.It remains to be determined how different inputs for memory-encoding, such as the use of paper notebooks or mobile devices, affect retrieval processes. We compared three groups of participants who read dialogues on personal schedules and wrote down the scheduled appointments on a calendar using a paper notebook (Note), an electronic tablet (Tablet), or a smartphone (Phone). After the retention period for an hour including an interference task, we tested recognition memory of those appointments with visually presented questions in a retrieval task, while scanned with functional magnetic resonance imaging. We obtained three major results. First, the duration of writing down schedules was significantly shorter for the Note group than the Tablet and Phone groups, and accuracy was much higher for the Note group in easier (i.e., more straightforward) questions. Because the input methods were equated as much as possible between the Note and Tablet groups, these results indicate that the cognitive processes for the Note group were deeper and more solid. Second, brain activations for all participants during the retrieval phase were localized in the bilateral hippocampus, precuneus, visual cortices, and language-related frontal regions, confirming the involvement of verbalized memory retrieval processes for appointments. Third, activations in these regions were significantly higher for the Note group than those for the Tablet and Phone groups. These enhanced activations for the Note group could not be explained by general cognitive loads or task difficulty, because overall task performances were similar among the groups. The significant superiority in both accuracy and activations for the Note group suggested that the use of a paper notebook promoted the acquisition of rich encoding information and/or spatial information of real papers and that this information could be utilized as effective retrieval clues, leading to higher activations in these specific regions.Accumulating evidence continues to emphasize the role of microRNAs as significant contributors to depression-like behavior and memory disorders. The current study aimed to investigate the mechanism by which miR-96 influences depression-like behavior and memory deficit in mice. A depression-like behavior and memory disorder mouse model was initially established by means of intraperitoneal injection with lipopolysaccharide. Memory deficits in the mice were evaluated using the Novel Object Recognition Test and Morris water maze experiments, whereas the Sucrose Preference Experiment and forced swimming experiments were performed to identify depression-like behavior in mice. selleck The levels of tumor necrosis factor-α, malondialdehyde, superoxide dismutase, glutathione, and the monoamine transmitters 5-hydroxytryptamine and dopamine were subsequently detected in the serum. Reverse transcription-quantitative polymerase chain reaction and Western blot analysis evaluated the expression of miR-96 and SV2C expression in the es the expression of SV2C, which consequently leads to depression-like behavior and memory impairment in mice. Our findings highlight the potential of miR-96-targeted therapeutics.
Auditory steady-state response (ASSR) is a gamma oscillation evoked by periodic auditory stimuli, which is commonly used in clinical electroencephalographic examination to evaluate the neurological functions. Though it has been suggested that auditory cortex is the origin of ASSR, how the laminar architecture of the neocortex contributes to the ASSR recorded from the brain surface remains unclear.
We used a 16-channel silicon probe to record the local field potential and the single-unit spike activity in the different layers of the auditory cortex of unanesthetized mice. Click-trains with a repetition rate at 40-Hz were present as sound stimuli to evoke ASSR.
We found that the LFPs of all cortical layers showed a stable ASSR synchronizing to the 40-Hz click stimuli, while the ASSR was strongest in the granular (thalamorecipient) layer. Furthermore, time-frequency analyses also revealed the strongest coherence between the signals recorded from the granular layer and pial surface.
Our results reveal that the 40-Hz ASSR primarily shows the evoked gamma oscillation of thalamorecipient layers in the neocortex, and that the ASSR may be a biomarker to detect the cognitive deficits associated with impaired thalamo-cortical connection.