Activity

  • Leslie Herskind posted an update 5 hours, 59 minutes ago

    It is to emphasize the importance of early diagnosis and multiple-target intervention, which may provide a promising outcome for AD treatment.Endoplasmic reticulum (ER) homeostasis is regulated by ER-resident E3 ubiquitin ligase Hrd1, which has been implicated in inflammatory bowel disease (IBD). Ginsenoside Rb1 (GRb1) is the major ginsenoside in ginseng with multiple pharmacological activities. In this study we investigated the role of Hrd1 in IBD and its regulation by GRb1. Two mouse colitis models were established to mimic human IBD drinking water containing dextran sodium sulfate (DSS) as well as intra-colonic infusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Colitis mice were treated with GRb1 (20, 40 mg·kg-1·d-1, ig) or a positive control drug sulfasalazine (500 mg·kg-1·d-1, ig) for 7 days. The model mice showed typical colitis symptoms and pathological changes in colon tissue. In addition to significant inflammatory responses and cell apoptosis in colon tissue, colon epithelial expression of Hrd1 was significantly decreased, the expression of ER stress markers GRP78, PERK, CHOP, and caspase 12 was increased, and the expression of Fas was increased (Fas was removed by Hrd1-induced ubiquitination). These changes were partially, or completely, reversed by GRb1 administration, whereas injection of Hrd1 inhibitor LS102 (50 mg·kg-1· d-1, ip, for 6 days) exacerbated colitis symptoms in colitis mice. GRb1 administration not only normalized Hrd1 expression at both the mRNA and protein levels, but also alleviated the ER stress response, Fas-related apoptosis, and other colitis symptoms. In intestinal cell line IEC-6, the expression of Hrd1 was significantly decreased by LPS treatment, but was normalized by GRb1 (200 μM). GRb1 alleviated LPS-induced ER stress and cell apoptosis in IEC-6 cells, and GRb1 action was inhibited by knockdown of Hrd1 using small interfering RNA. In summary, these results reveal a pathological role of Hrd1 in colitis, and provide a novel insight into alternative treatment of colitis using GRb1 activating Hrd1 signaling pathway.Telomere erosion and mitochondrial dysfunction are prominent features of aging cells with progressive declines of cellular functions. Whether telomere injury induces mitochondrial dysfunction in human T lymphocytes, the major component of adaptive host immunity against infection and malignancy, remains unclear. We have recently shown that disruption of telomere integrity by KML001, a telomere-targeting drug, induces T cell senescence and apoptosis via the telomeric DNA damage response (DDR). In this study, we used KML001 to further investigate the role and mechanism of telomere injury in mitochondrial dysregulation in aging T cells. We demonstrate that targeting telomeres by KML001 induces mitochondrial dysfunction, as evidenced by increased mitochondrial swelling and decreased mitochondrial membrane potential, oxidative phosphorylation, mitochondrial DNA content, mitochondrial respiration, oxygen consumption, glycolysis, and ATP energy production. Mechanistically, we found that the KML001-induced telomeric DDR activated p53 signaling, which in turn repressed the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1), leading to T cell mitochondrial dysfunction. These results, forging a direct link between telomeric and mitochondrial biology, shed new light on the human T cell aging network, and demonstrate that the p53-PGC-1α-NRF-1 axis contributes to mitochondrial dysfunction in the setting of telomeric DDR. This study suggests that targeting this axis may offer an alternative, novel approach to prevent telomere damage-mediated mitochondrial and T cell dysfunctions to combat a wide range of immune aging-associated human diseases.To elucidate the effects of neoadjuvant chemotherapy (NAC), we conduct whole transcriptome profiling coupled with histopathology analyses of a longitudinal breast cancer cohort of 146 patients including 110 pairs of serial tumor biopsies collected before treatment, after the first cycle of treatment and at the time of surgery. Here, we show that cytotoxic chemotherapies induce dynamic changes in the tumor immune microenvironment that vary by subtype and pathologic response. MK-5108 research buy Just one cycle of treatment induces an immune stimulatory microenvironment harboring more tumor infiltrating lymphocytes (TILs) and up-regulation of inflammatory signatures predictive of response to anti-PD1 therapies while residual tumors are immune suppressed at end-of-treatment compared to the baseline. Increases in TILs and CD8+ T cell proportions in response to NAC are independently associated with pathologic complete response. Further, on-treatment immune response is more predictive of treatment outcome than immune features in paired baseline samples although these are strongly correlated.This study investigated the relationships between HDL-C and major types of blood cancers. Competing risks regression was used to examine the hazard ratios of hematologic malignancies in 9,596,145 individuals (≥20 years) using data from the Korean National Health Insurance Service (2009-2017). The incidence of the following hematologic cancers was determined based on the International Classification of Diseases 10th revision Multiple Myeloma (MM), Hodgkin Lymphoma (HL), Non-Hodgkin Lymphoma (NHL), Lymphoid Leukemia (LL), and Myeloid Leukemia (ML). During an average of 8.3 years of follow-up (79,179,225 person-years), 15,864 incident hematologic malignancies were identified. Compared to those in the highest HDL-C quartile, subjects in the lowest HDL-C quartile had the highest risk of all hematologic cancers combined (adjusted hazard ratio [HR], 95% confidence interval [95% CI] = 1.31, 1.25-1.37) and of each respective type of blood cancer, as follows MM (HR 1.61, 95% CI, 1.46-1.76), HL (HR 1.35, 95% CI 1.07-1.70), NHL (HR 1.12, 95%CI 1.04-1.21), LL (HR 1.36, 95% CI 1.16-1.61), and ML (HR 1.33, 95% CI 1.22-1.45). Low HDL-C level was significantly associated with increased risk of hematologic malignancy, suggesting that a low HDL-C level is an independent risk factor and preclinical marker for hematologic malignancy.