-
Locklear Williamson posted an update 2 days, 6 hours ago
Developments in the field of photoredox catalysis that leveraged the long-lived excited states of Ir(III) and Ru(II) photosensitizers to enable radical coupling processes paved the way for explorations of synthetic transformations that would otherwise remain unrealized. While first row transition metal photocatalysts have not been as extensively investigated, valuable synthetic transformations covering broad scopes of olefin functionalization have been recently reported featuring photoactivated chlorobis(phenanthroline) Cu(II) complexes. Selleck G6PDi-1 In this study, the photochemical processes underpinning the catalytic activity of [Cu(dmp)2Cl]Cl (dmp = 2,9-dimethyl-1,10-phenanthroline) were studied. The combined results from static spectroscopic measurements and conventional photochemistry, ultrafast transient absorption, and electron paramagnetic resonance spin trapping experiments strongly support blue light (λex = 427 or 470 nm)-induced Cu-Cl homolytic bond cleavage in [Cu(dmp)2Cl]+ occurring in less then 100 fs. On the basis of electronic structure calculations, this bond-breaking photochemistry corresponds to the Cl → Cu(II) ligand-to-metal charge transfer transition, unmasking a Cu(I) species [Cu(dmp)2]+ and a Cl atom, thereby serving as a departure point for both Cu(I)- or Cu(II)-based photoredox transformations. No net photochemistry was observed through direct excitation of the ligand-field transitions in the red (λex = 785 or 800 nm), and all combined experiments indicated no evidence of Cu-Cl bond cleavage under these conditions. The underlying visible light-induced homolysis of a metal-ligand bond yielding a one-electron-reduced photosensitizer and a radical species may form the basis for novel transformations initiated by photoinduced homolysis featuring in situ-formed metal-substrate adducts utilizing first row transition metal complexes.Manipulation of gas bubbles in an aqueous ambient environment is fundamental to both academic research and industrial settings. Present bubble manipulation strategies mainly rely on buoyancy or Laplace gradient forces arising from the sophisticated terrain of substrates. However, these strategies suffer from limited manipulation flexibility such as slow horizontal motion and unidirectional transport. In this paper, a high performance manipulation strategy for gas bubbles is proposed by utilizing ferrofluid-infused laser-ablated microstructured surfaces (FLAMS). A typical gas bubble (500 own mass) on the air-water interface. This strategy shows terrain compatibility, programmable design, and fast response, which will find potential applications in water treatment, electrochemistry, and so on.An efficient synthesis of diketopiperazinoindolines through an indium-catalyzed intramolecular 5-exo-dig cyclization of ortho-alkynyl diketopiperazines has been reported. The formation of diketopiperazinoindolines proceeds via a regio- and diastereoselective Conia-ene reaction. This synthetic method opens a new door for easy access to functionalized fused diketopiperazinoindolines in high to excellent yields with exclusive Z diastereoselectivity.Here, an interesting palladium-catalyzed intermolecular Heck-type dearomative [4 + 2] annulation of 2H-isoindole derivatives with internal alkynes has been developed, affording diverse polycyclic pyrrolidine scaffolds in good yield. This reaction is a useful method for the transformation of 2H-isoindole.Single-walled carbon nanotubes (SWCNTs) have the potential to revolutionize nanoscale electronics and power sources; however, their low purity and high separation cost limit their use in practical applications. Here we present a supramolecular chemistry-based one-pot, less expensive, scalable, and highly efficient separation of a solubilizer/adsorbent-free pure semiconducting SWCNT (sc-SWCNT) using flavin/isoalloxazine analogues with different substituents. On the basis of both experimental and computational simulations (DFT study), we have revealed the molecular requirements of the solubilizers as well as provided a possible mechanism for such a highly efficient selective sc-SWCNT separation. The present sorting method is very simple (one-pot) and gives a promising sc-SWCNT separation methodology. Thus, the study provides insight for the molecular design of an sc-SWCNT solubilizer with a high (n,m)-chiral selectivity, which benefits many areas including semiconducting nanoelectronics, thermoelectric, bio and energy materials, and devices using solubilizer-free very pure sc-SWCNTs.High in-plane anisotropies arise in layered materials with large structural difference along different in-plane directions. We report an extreme case in layered TiS3, which features tightly bonded atomic chains along the b-axis direction, held together by weaker, interchain bonding along the a-axis direction. Experiments show thermal conductivity along the chain twice as high as between the chain, an in-plane anisotropy higher than any other layered materials measured to date. We found that in contrast to most other materials, optical phonons in TiS3 conduct an unusually high portion of heat (up to 66% along the b-axis direction). The large dispersiveness of optical phonons along the chains, contrasted to many fewer dispersive optical phonons perpendicular to the chains, is the primary reason for the observed high anisotropy in thermal conductivity. The finding discovers materials with unusual thermal conduction mechanism, as well as provides new material platforms for potential heat-routing or heat-managing devices.The interactions between antigen and adjuvant were among the most significant factors influencing the immunogenicity of vaccines, especially for unstable antigens like inactivated foot and mouth disease virus (iFMDV). Here we propose a novel antigen delivery pattern based on the coordination interaction between transition metal ions Zn2+ chelated to chitosan nanoparticles and iFMDV, which is known to be rich in histidine. The zinc chelated chitosan particles (CP-PEI-Zn) were prepared by cross-linking chitosan particles (CP) with sodium tripolyphosphate (TPP), modifying with metal chelator polyethylenimine (PEI), and subsequent chelating of Zn2+. The coordination interaction was confirmed by analyzing the adsorption and desorption behavior of iFMDV on CP-PEI-Zn by high-performance size exclusion chromatography (HPSEC), while the CP-PEI without chelating Zn2+ loads iFMDV mainly through electrostatic interactions. The iFMDV loaded on CP-PEI-Zn showed better thermal stability than that on CP-PEI, as revealed by a slightly higher transition temperature (Tm) related to iFMDV dissociation.